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ABSTRACT
Concentric mosaics are low-dimensional lightfields. Yet
capturing concentric mosaics requires a motor-controlled
device and it is not practical for real outdoor scenes. In
this paper, we propose a new concentric mosaic construc-
tion method by hand rotating an outward-looking camera.
The geometry of such a capturing system is formulated as
an outward-looking circular motion with unknown rotation
angles. Then, a new and practical method of analyzing the
motion and structure of a very long sequence of images is
developed. The method needs to compute one fundamental
matrix for a typical sequence of 3000 frames and track one
point in three frames to propagate the recovery of the rota-
tion angles to the whole sequence. We will demonstrate the
superior performance of mosaics construction and render-
ing results by using the new algorithm.

1. INTRODUCTION

Recently, image-based rendering methods [11] have gener-
ated much interest in computer vision and graphics. These
methods generate new views of scenes from novel view-
points, using a collection of images as the underlying scene
representation. When the sampling is dense, a large amount
of work [11, 9, 6] has been developed based on plenop-
tic functions. This models sets of all rays seen from all
points, considering each image as a set of rays. The major
challenge is the very high dimensionality of such plenoptic
functions. Many simplified assumptions that limit the un-
derlying viewing space have been introduced: 5D plenop-
tic modelling [11], 4D Lightfield/Lumigraph [9, 6], 3D
concentric mosaics [15, 2] and 2D panorama [12, 3, 17].
Among all these approaches, concentric mosaics [15] is a
good trade-off between the ease of acquisition and view-
ing space. Yet the acquisition of concentric mosaics uses
a motor-controlled device to record the angular motion of
the camera. It is not only impractical for capturing outdoor
large-scale environments, but it also gives quite poor results
of the rotation angles. The goal of this paper is to make the
concentric mosaic capturing practical by merely rotating the
camera by hand. The geometry of such a capturing system

can be formulated as an outward-looking circular motion of
a camera with unknown rotation angles.

Circular motion naturally arises from both the traditional
3D modelling using an inward-looking turntable [5] and the
outward-looking concentric mosaics [15, 13]. The recovery
of rotation angles under circluar motion has been studied
by Fitzgibbon et al. [5] using fundamental matrices and tri-
focal tensors for each pair or each triplet of images. It is
therefore impractical for large image sequence. Jiang et al.
[8] show that the geometry of single axis motion can be de-
termined by fitting at least two conics. The method is good
for inward-looking and small-scale turntable as the conic
trajectory is evident. However it does not fit the outward-
looking cases, as in large-scale environments, the trajectory
is barely curved and fitting a conic is infeasible.

The outward-looking case is therefore more challeng-
ing and not well studied. The limitations of the exist-
ing methods motivated our development of a very simple
and efficient method capable of computing all rotation an-
gles of a very large sequence of images. The new method
is particularly interesting as it shows that angle compu-
tation can propagate efficiently between different tracked
feature points. The propagation is initialized by comput-
ing one fundamental matrix from a pair of images between
which enough feature points are successfully tracked. No
any more fundamental matrix is needed. The new method
makes large-scale outdoor single axis motion based appli-
cations practical.

This paper is organized as follows. Section 2 describes
the geometry invariants under single axis motion. Section 3
and Section 4 present our new method of recovering rotation
angles based on these invariants. Experimental results are
presented in Section 5 and finally a short conclusion is given
in Section 6.

2. GEOMETRIC INVARIANTS OF CIRCULAR
MOTION

It is important to firstly review the invariant entities un-
der circular motion [5] to ease the introduction of our new
method.



The fixed image entities of the circular motion are sim-
ilar to planar motion, which includes two lines. One is the
image of the rotation axis,ls. Note thatls is a line of fixed
points. Unlike in planar motion, linels is fixed in all images
under circular motion. The other line is called the horizon
line, lh, the image of the vanishing line of the horizontal
plane. Unlike the image of the rotation axis, the horizon
line is a fixed line, but not a line of fixed points. Since the
image of the absolute conic,ω∞, is fixed under rigid mo-
tion, there are two points that are at the intersection of the
image of the absolute conicω∞ with the line,lh. They re-
main fixed in all images. Actually, these two fixed points
are the image of the two circular points on the horizontal
planes.

Since the linelh is determined by the images of circular
points, there are in total 6 d.o.f., which is enough to deter-
mine the fixed entities of the circular motion. There are 2
for each image of the two circular points and 2 for the im-
ages of the rotation axis,ls.

The image fixed entities are illustrated in Figure 1, which
play a fundamental role in the rotation angle recovery as
will be described in the following sections.

3. ROTATION ANGLE RECOVERY

The key of our approach is to use Laguerre’s formula[14]
for the tracked points to compute the angular motion. In
Figure 1, consider the equivalent case that the camera is
fixed and the scene is rotating around the rotation axis. Cor-
responding pointsa1 anda2 are obtained from two different
images. They are the images of one space pointA from two
positionsA1 andA2. The trajectory of the pointA is a cir-
cle in space while its image pointsa1 anda2 mapped by
homography are staying on a conic locus. If we assume
that the image of the circle centeroa and the imaged cir-
cular pointsi and j of the underlying rotation plane are all
known, then using Laguerre’s formula, the rotation angle
between the pair of images in which we have the corre-
sponding pointsa1 ↔ a2 can be computed as

θ =
1
2i

log({oa × a1, oa × a2; oa × i, oa × j}).

The ai are known image points. The images of the cir-
cular pointsi andj can be obtained from an off-line calibra-
tion method [19, 16] or a self-calibration method based on
the fixed lines in three views using the 2D trifocal tensor [1]
or the 1D trifocal tensor [4].

The recovery of the rotation angleθ is therefore equiva-
lent to only finding the image of the circle centeroa. The
method will be described in the following section.
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Fig. 1. Computation of the rotation angle in the image plane
instead of in the space plane.

4. PROPAGATION OF ANGULAR MOTION

We assume a calibrated camera with unknown motion.
First, we obtain the calibration parameters including the
radial distortion using the practical methods proposed in
[19, 16]. Then, the propagation procedure from one fun-
damental matrix and one tracked point is developed for a
very large sequence.

1. The first angle for the reference pair using a fun-
damental matrix We need to choose a pair of images for
which it is possible to compute the fundamental matrixF
[10] using corresponding points. We call this pairthe refer-
ence pairof the sequence. Then we compute the symmetric
part,Fs = F + FT . The rank of the matrixFs is 2, which
can be decomposed into two lines. One of the lines is the
image of rotation axisls and the other is the horizon line
lh [5]. Let e1 and e2 be the epipoles related to the fun-
damental matrixF. As the camera undergoing single axis
motion moves on the horizontal plane, so the epipoles must
be on the horizon linelh. As we assumed that the circular
points are obtained from the camera calibration (intersec-
tion of the absolute conic and the horizon line), the rotation
angle between this pair of images is easily obtained by ap-
plying Laguerre’s formula as (the proof is omitted due to
space limitation):

θ =
1
2i

log({e1, e2; i, j}).

2. The homography from the known angleA homog-
raphy exists between the image plane and a space plane on
which a space point is moving on a circle. We first compute
this homography from the known angle, then, compute the
image of the space circle center.

For a pair of corresponding image pointsa1 anda2, we
can assume their space coordinates in the circular trajec-
tory plane to be(r, 0, 1)T and(r cos(θ), r sin(θ), 1)T . Now
we have four pairs of corresponding points,A1 ↔ a1,



A2 ↔ a2, I ↔ i andJ ↔ j between the space planeπi and
the image plane. The homographyHa between the space
plane and the image plane can be obtained up to one un-
known, the circle radiusr. The image coordinates of the
space circle center is obtained asoa = Ha(0, 0, 1)T =
r(h13, h23, h33)T , or in inhomogeneous coordinates

oa = (h13/h33, h23/h33)T

which is independent of the unknown radiusr.
Once the image projection of the circle centeroa is ob-

tained, it is straightforward to use Laguerre’s formula to
compute the rotation angle for any third view which has
a visible corresponding point with the point for which we
know the image projection of the circle center. This is a key
point of the propagation of rotation angle from a pair of im-
ages with known rotation angle to any third view through
just one corresponding point via tracking.

3. Propagation from the reference pair
Since the image of pointA can be possibly tracked in

other images than the current pair, the rotation angle of any
view containing the tracked point ofa can be computed.
For example,a3 is a corresponding point in a third view, the
angular motion between the views 2 and 3 is

θ23 =
1
2i

log({oa × a2, oa × a3; oa × i, oa × j}).

Note that this rotation angle recovery for additional views
does not need to compute any other quantities such as the
fundamental matrix, and only one tracked point is sufficient.
This procedure can be repeated for all points of the pair
for which we have computed the fundamental matrix. In
other words, the computation of the rotation angles between
views can be simply propagated to all views in which at
least one point is in correspondence with one point of the
original pair of the images.

4. Propagation from any pairs
With the above procedure, many rotation angles of the

frames of the sequence could be obtained, but still we have
many images of the sequence in which there is no ’visible’
point from the original selected pair of images. However,
it is important to notice that the above angle propagation
procedure can be extended to any view which has at least
one pair of ‘visible’ corresponding points with ANY pair of
views which already has its angle computed. For example,
pointsb2 andb3 are ’visible’ corresponding points related
the known rotation angleθ23, the image of the circle center
ob can be obtained from calculating a homographyHb as
mentioned earlier. The angular motion of views related to
point b are obtained. Again, because for one pair of corre-
sponding points from the pair of the images and the known
angular motion, the imaged circle center of this point is de-
termined, so its angle can be easily computed for any third
view in which this corresponding point is tracked. This

propagation procedure can be performed along the whole
image sequence unless there are few features in the scene.

5. Final optimization for the whole sequence
The above procedure using minimal data efficiently gives

reasonable estimates for the motion parameters of the whole
sequence that can be optimized by the following maximum
likelihood method.

The circular pointsi andj with coordinates(a ± ib, c ±
id, 1)T rectify the projective image points into the metric
points in space by the following homography [7, 8]

H =




c2 + d2 −ac− bd 0
0 ad− bc 0

d(ad− bc) −b(ad− bc) −(ad− bc)2


 .

The corresponding image pointsa1, a2 and the related
image of the circle centeroa are brought into space with the
homography. They satisfy the following equation:

R(θ)(Ha1 − Hoa)− (Ha2 − Hoa) = 0,

whereR(θ) is a rotation matrix with rotation angleθ.
For a total ofn feature points tracked inm frames. The

cost function can be written as
m∑

i=1

n∑

j=1

‖R(θi)
(Hxj

i − Hoj)
‖Hxj

i − Hoj‖ −
(Hxj

i+1 − Hoj)

‖Hxj
i+1 − Hoj‖‖,

whereθi denotes the rotation angle between framesi and
i + 1. The superscript of pointxj denotes thejth num-
ber of tracked features,oj is the image of the circle center
corresponding to this tracked point. The subscript of point
xi denotes theith frame of the sequence. Every point is
tracked in a limited frame range. Since one tracking point
only relates to the image of the circle center and terms with-
out visiblexj

i are omitted. There are in total6+m+n d.o.f.
that need to be optimized, 6 for the image fixed entities,m
for the number of rotation angles andn for number of the
conic centers. Note that the conic center lies onls and only
1 d.o.f. is provided by each conic center.

Usually, the image sequence covers a full 360 degrees
environment for concentric mosaics and we can easily de-
tect the start and end frames from overlapped images. The
final constrained optimization is given as

min(
m∑

i=1

n∑

j=1

‖R(θi)
(Hxj

i − Hoj)
‖Hxj

i − Hoj‖ −
(Hxj

i+1 − Hoj)

‖Hxj
i+1 − Hoj‖‖

+λ|
m∑

i=1

θi − 2π|),

whereλ is the Lagrange multiplier. This cost function can
be solved using nonlinear algorithms based on the initial es-
timates obtained in the previous section. The function has
a very sparse structure that allows us to develop a very effi-
cient optimization procedure even for a very large sequence.
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Fig. 3. Tracking of 20 points simultaneously for each frame over 4382 frames of the classroom sequence. Each colored line
segment represents the tracking of one point. Points tracked in less than 100 frames are discarded for computational stability.

5. IMPLEMENTATION DETAILS AND
EXPERIMENTS

The following considerations have to be taken into account
for a very large sequence of typically 3000 frames.

• The small motion between frames makes the feature
tracking practical over quite a large range of images,
and the number of images is restricted by the field of
view of the camera used. In order to improve the ac-
curacy of the results, we need to calculate the funda-
mental matrix or any homography using the tracked
points with as large a tracking distance as possible. In
this case, we should note that the third view mentioned
in the paragraphs above is always between the former
view pair and near to the first view.

• In practice, multiple sequences of tracked feature
points may overlap with the same frame range and the
computed rotation angles may not be consistent due to
noise. Therefore, robust methods should be used to
discard outliers. In implementation, the median from
multiple values is taken as the initial value used in the
last non-linear optimization step.

• Although the camera internal parameters are known,
the fundamental matrix, instead of the essential matrix,
is used here to avoid the possible ambiguities[7].

Set-up The simple setup for capturing the concentric
mosaics involves mounting a digital video camera on a hor-

Fig. 2. The loci of a group of feature points tracked in 600
frames. The frames corresponding to the endpoints of the
trajectory curves are selected as the reference pair.

izontal bar that is fixed on a tripod. The camera is then
moved by hand to capture the sequence. The first example
is an indoor classroom. The second is an outdoor garden. To
validate our approach and demonstrate its superior perfor-
mance, a flower sequence captured by a motor-controlled
device is also used. The image resolution is720 × 576.
We extracted 4382 (classroom), 3361 (garden), and 1467
(flower) frames. The camera parameters including the ra-
dial distortion are calibrated using the method in [19]. Ra-
dial distortion is corrected for each frame.

Feature Tracking The sampling density is high and the
tracking of points of interest is efficiently accomplished
by the standard methods reported in [18]. Simultaneously
tracking about 100 feature points over 4382 frames takes
about 40 minutes on a P4 1.9G PC. Figure 2 shows the
loci of a group of feature points tracked over 600 frames
in the classroom sequence. The frames corresponding to
the endpoints of these trajectory curves can be selected as
the reference pair for the computation of the unique funda-
mental matrix necessary for the whole sequence. Figure 3
illustrates the tracking for the whole classroom sequence.
Twenty feature points are tracked for each frame. When a
feature point is lost in tracking, a new one is added in the
frame to keep the feature number constant.

Rotation Angle RecoveryThe automatically recovered
rotation angles are shown in Figure 4. Figure 4(a)(b)(c)
show the optimized results of three sequences. Figure 4(d)
shows the result of the classroom sequence before and after
optimization. We notice that the results even before opti-
mization are already very good, and that the optimization
reduces the variation and keeps the same curve shape. The
negative angles are due to high hand trembling for the first
sequence. The hand motion is smaller in the garden se-
quence. For the flower sequence, the standard deviation is
much smaller than the other two. This verifies the effective-
ness of our algorithm.

Construction of mosaicsThe high quality composition
of the concentric mosaics using the recovered rotation an-
gles is shown in Figure 5. Each of these mosaics is param-
eterized by two parameters that encodes the 3D geometric
information. This mosaic is different from the existing ones,



and can be used for full scene reconstruction. Due to space
limitation, this will not be further discussed.

RenderingThe concentric mosaics such constructed can
be used for efficient rendering using the method in [15].
Figure 6 shows rendered images in which we see clearly that
the zooming, occlusion, and reflection effects are correctly
rendered.

(a)

(b)

(c)

Fig. 6. Rendered images using concentric mosaics. (a) a
forward camera motion. (b) a lateral camera motion. (c)
a lateral and rotating camera motion. Notice that zooming,
occlusion and reflection effects are correctly rendered.

6. CONCLUSION

We have presented a new method of efficiently analyzing
a large sequence of images captured by a hand-controlled
circular motion device. The method is particularly attrac-
tive as it needs only to compute one fundamental matrix to
initialize an efficient automatic propagation of the angular
computation to the whole sequence. This provides a practi-
cal way of capturing large-scale outdoor environments with
a hand-controlled camera for modelling and rendering. Ex-
periment results demonstrate the correctness and efficiency
of the algorithm.
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Fig. 4. Recovered rotation angles. (a)(b)(c) show the optimized results. Red line in (c) is the ground truth. (d) shows the
results of the classroom sequence before(black) and after(green) optimization.

Fig. 5. The composed concentric mosaics using the recovered rotation angles.


