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Abstract

A novel region-based progressive stereo matching algo-
rithm is presented. It combines the strengthes of previous
region-based and progressive approaches. The progressive
framework avoids the time consuming global optimization,
while the inherent problem, the sensitivity to early wrong
decisions, is significantly alleviated via the region-based
representation. A growing-like process matches the regions
progressively using a global best-first strategy based on a
cost function integrating disparity smoothness and visibility
constraint. The performance on standard evaluation plat-
form using various real images shows that the algorithm is
among the state-of-the-art both in accuracy and efficiency.

1. Introduction

Stereo matching is inherently ambiguous in homoge-
neous and occluded areas. Only salient features, such as
points of interest, can be matched reliably. This naturally
motivates the development of progressive approaches [7,
14, 26, 20, 5, 10]. Such approaches first match those reliable
features(generally pixels, and regions in our method). The
earlier matched features will guide the subsequent match-
ing in a growing-like process. An ambiguous decision is
postponed until enough confidence can be accumulated to
resolve the ambiguity. One main strength of progressive
approaches is the low computational complexity since no
global optimization is required. However, the inherent prob-
lem is the sensitivity to early wrong decisions. Since no
back-tracking technique is used, a wrong decision cannot be
corrected and will corrupt the subsequent matching rapidly.

A lot of region-based stereo algorithms arise recently
[21, 9, 25, 3, 15, 24]. Although quite different from each
other, they benefit from the common strengthes intrinsic to
the region-based representation: the capability of occlusion
handling around region boundaries and disparity regulariza-
tion inside regions. The success of those algorithms mo-
tivates us to ask that whether it is possible to integrate a

region-based approach within a progressive framework and,
if so, will the two different categories of algorithms comple-
ment each other to offer a better algorithm?

We believe that the answers should be positive. An im-
portant observation is that, since regions contain much
richer information than individual pixels, the possibility of
making a wrong decision upon a region could be greatly re-
duced. Therefore, the inherent problem in a progressive ap-
proach, the sensitivity to early wrong decisions, could be al-
leviated.

Guided by these ideas, a region-based progres-
sive matching algorithm is developed. It is simple, ro-
bust and efficient, compared with previous progressive
or region-based algorithms. It is evaluated on the stan-
dard platform on web proposed by Scharstein and Szeliski
[17, 18, 1] and also compared with other unambigu-
ous matching algorithms[16, 22, 23, 10]. Results show that
our algorithm is among the state-of-the-art, both in accu-
racy and efficiency.

Overview of our approach The algorithm starts from
reliably matched pixels, calledground control points, GCPs
[5, 10]. Regions are firstly obtained via color segmentation,
then followed by a novel dynamic region splitting method.
Reliable regions are firstly identified and matched using
GCPs. Remaining regions are matched progressively in a
growing-like process using a global best-first strategy based
on a cost function that integrates disparity smoothness and
visibility constraints and an ambiguity measure that is de-
fined to be the ratio of the best and second best costs. Gen-
erally, matched regions propagate from textured areas to ho-
mogeneous and occluded areas. The progressive matching
process stops if dense disparity map is obtained or a pre-
specified reliability threshold is reached. Figure 1 shows
disparity maps produced in different stages of the algorithm.

Organization Section 2 discusses some preliminaries of
the algorithm. Section 3, 4 and 5 describe the GCP com-
putation method, the method of matching reliable regions
from GCPs and the progressive matching algorithm, respec-
tively. Experimental results are reported in Section 6. Sec-
tion 7 concludes the paper.



Figure 1. Disparity maps produced during different stages of the algorithm. Left most is the ground
control points. Error disparities are shown in red (see the electronic version). One could see that
textured regions are generally matched at first. The homogeneous and occluded regions, which are
more ambiguous, are matched at last (refer to Figure 6).

2. Preliminaries

2.1. Definitions

We use a pair of horizontally rectified stereo images to
ease the description of the algorithm through out the paper.
While the algorithm only computes one disparity map, the
generalization for multiple input images is straightforward.

Let I0 denote the reference (left) image andI1 the sec-
ond (right) image. The disparity mapD of I0 is a function
that assigns each pixelp in I0 a disparityd, a horizontal dis-
placement vector, such thatp in I0 andp + d in I1 corre-
spond to the same 3D point. Starting from an empty dispar-
ity map,D(p) = undefined, ∀p ∈ I0, a progressive algo-
rithm definesD gradually.

A pair (pixel, disparity) is called amatch, which could
be considered a 3D point. The current disparity map defines
currently found matches,{(p, D(p))|Dp 6= undefined}. A
matching cost functionC(p, d) measures the cost of a match
based on pixel color or intensity in the images,

C(p, d) = f(I0(p), I1(p + d)) (1)

This function can be the usualSSD(sum of squared differ-
ence),SAD(sum of absolute difference) or normalized cor-
relation. We use the pixel dissimilarity measure in [2] that
proves to be insensitive to the image sampling noise.

2.2. Constant Disparity Assumption

The reference imageI0 consists of non-intersecting re-
gions that are initially produced by a color segmentation
algorithm using mean shift [8]. We assume that pixels in-
side the same region have the same disparity and our algo-
rithm actually assigns each region a disparity. This assump-
tion makes our method very simple and efficient.

The assumption seems quite restrictive since it is only
valid for fronto-parallel surfaces and becomes problematic
when a region represents a pronounced slanted surface or
crosses surface boundaries. However, we claim that, the

limitation could be significantly alleviated and the assump-
tion becomes a very good approximation in practice by tak-
ing the following measures.

Over-segmentation Disparity discontinuities usu-
ally coincide with intensity edges that can be read-
ily captured by a color segmentation algorithm. This is
the underlying assumption of a lot of region-based ap-
proaches [21, 9, 25]. Almost all the object boundaries,
i.e., the disparity discontinuities, can be detected us-
ing over-segmentation.

Dynamic region splitting After color segmentation, we
take an additional region splitting method that helps captur-
ing object boundaries missed by color segmentation and de-
composes a pronounced slanted surface into small regions,
therefore making the constant disparity assumption a good
approximation. The method is described in Section 4.

2.3. Constrained Matching Cost

At any stage in a progressive scheme, currently found
matches should constrain the subsequent matching and help
to resolve the ambiguity. In this section, we describe how
to efficiently integrate visibility and smoothness constraints
into the pixel matching cost computation. These constraints
are fully exploited in the region-based framework.

Visibility Constraint For visibility reasoning, an auxil-
iary disparity function,D1, is defined onI1. It is produced
by projecting to the viewpoint ofI1 all the currently found
matches inD. If multiple matches are projected to the same
position inI1, which indicates the occurrence of occlusion,
only the one with the largest disparity is recorded inD1.
There are, of course, pixels inD1 that are undefined.

For a candidate match(p, d) being considered, there are
three cases for its projection inI1. It may project to a pixel
that is either undefined, occluded by a previously found
match, or occluding a previously found match, according to
the information stored inD1. Since earlier found matches
are considered more reliable, their later occlusion should be
prohibited. The matching cost integrating occlusion penalty



is defined as

Cvis(p, d) =





C(p, d) D1(p + d) is undefined
λocc D1(p + d) ≥ d
C(p, d) + λocc D1(p + d) < d

(2)
whereλocc is a positive constant.

Smoothness ConstraintAlso known asgradient limit
constraint, this constraint states that the disparity map is
smooth almost everywhere and is used in a lot of stereo
algorithms, explicitly or implicitly. LetN denote the 4-
connected neighborhood system,N = {(p, q) | |px− qx|+
|py − qy| = 1}, the smoothness cost is defined for only pix-
els on the region boundary as

Csmooth(p, d) = λsmooth·
|{q|(p, q) ∈ N ∧ p, q are not in the same region
∧(D(q) = undefined ∨ D(q) 6= d)}|

(3)

whereλsmooth is a positive constant.
Intuitively speaking, function (3) will increase the cost

by λsmooth once for each pair of pixels whose disparities
are not equal. Although the smoothness constraint is en-
sured inside the regions, function (3) will help to regular-
ize the disparity map a lot since there will generally be a lot
of small regions.

Constrained Matching CostIt is defined as

C(p, d) = Cvis(p, d) + Csmooth(p, d) (4)

It is noteworthy that eq. (2), (3) and (4) are unary func-
tions, different from those defined in graph cut algorithms
[6, 13] where the smoothness and visibility term are binary
functions. While the latter is obviously more general and
powerful, the former is simpler, more computationally effi-
cient and can exploit occlusion and smoothness constraints
fully within the region-based framework, since occlusion
does not occur inside a region and smoothness inside a re-
gion is guaranteed.

3. Reliable Pixel Matching

Our algorithm starts by matching those highly reliable
pixels, so calledground control points(GCPs)[5, 10]. It
could be shown that carefully computed GCPs are almost
free of outliers. Therefore, they can serve as a good start-
ing point.

Let dbest
p be the best disparity of a pixelp in terms of the

cost function (1),dbest
p = arg mind C(p, d). p is a candi-

date GCPif

C(p, dbest
p ) ≤ λamb ∗ C(p, d′),∀d′ 6= dbest

p , and
C(p, dbest

p ) ≤ λamb ∗ C(p′, d′), ∀(p′, d′), p′ + d′ = p + dbest
p

(5)

Figure 2. Computed ground control
points( λamb = 0.4). Outliers are shown in
red (see the electronic version). Left: be-
fore post-processing. Right: after post-
processing.

whereλamb(0 < λamb ≤ 1) is the ambiguity level used
through out the whole algorithm. The disparity of a candi-
date GCPp is dbest

p .
Condition (5) subsumes the commonly used winner-

takes-all strategy and left-right consistency checking
(λamb=1). It actually states that a reliable match(p, dbest

p )
should have a cost value salient enough to stand out from
those of all competing matches. A small amount of ag-
gregation overC(p, d) is necessary to make (5) ro-
bust. A constant5 × 5 local window is used. Note that
the window-based 2D aggregation is only used here and
all the other computation involved in the whole algo-
rithm is purely based on pixels and regions.

The outliers in the candidate GCPs(see Figure 2) can
be roughly classified into two categories, those caused by
random noise in the image and those caused by so called
fore-ground fatteningproblem, which systematically dis-
tribute near the surface boundary on the side of homoge-
neous background. While the first category of errors can be
handled simply, e.g., by eliminating isolated GCPs [5] or
those with very large standard deviations in a small neigh-
borhood [25], the second category of errors cannot be han-
dled trivially.

Observing that a lot of small holes exist in highly reli-
able areas, we take a post-processing step to eliminate sec-
ond category of outliers by firstly applying a morphologi-
cal closing to fill the holes and then an erosion to shrink the
boundaries of connected GCPs of the same disparity. Errors
are reduced significantly after post-processing, at the price
of sacrificing many correct GCPs (see Figure 2), and result-
ing GCPs are almost free of outliers.

4. Reliable Regions from GCPs

As observed, the GCPs are relatively dense in textured
areas and almost free of outliers. Naturally, the more GCPs
in a region of the same disparity, the more reliable it is to as-
sign the region the disparity. Based on this observation, we



(a) (b) (c)

Figure 3. Dynamic region splitting. (a) Split-
ting as a bi-labelling problem (see electronic
version for visualization). The boundary of
camera pole missed by color segmentation
is detected. (b)(c) A pronounced slanted sur-
face(b) is split into smaller regions(c) that
can be approximated by constant disparity.

first discuss two related issues and then introduce an effi-
cient initialization algorithm that matches reliable regions.

Dynamic region splitting is necessary when a region
contains GCPs with more than one disparity, when the
region crosses the surface boundary or represents a pro-
nounced slanted surface. For computational efficiency con-
sideration, we assume that pixels in the region have only
two different disparities. This is not essential since a region
can be split iteratively.

The splitting is a process of assigning each pixel one of
the two disparities that receives the most and second most
votes from the GCPs in the region. New regions consist of
connected pixels with the same assigned disparity. Figure 3
demonstrates examples.

The disparity assignment is a bi-labelling problem that
can be addressed as an energy minimization problem in
MAP-MRF framework and solved exactly by graph cut al-
gorithm [11, 6]. We use the cost function (2) as the data
term, instead of cost (1) as in [6]. The former is more in-
formative in the context of a progressive framework. The
smoothness term is the same as in [6]. The same smooth-
ness penaltyλsmooth is used as in (3). Refer to [6] for more
details.

Spatial distribution of GCPs must be considered. A re-
gion has good distribution of GCPs if the range of all GCPs
is larger than half the range of the region in both horizon-
tal and vertical directions and the density of GCPs is larger
than a pre-defined threshold,ρdensity(0.25 used in the ex-
periments). These simple heuristics work well in practice.

Initialization algorithm labels each region as
MATCHED or UNMATCHED. All regions are unla-
belled initially. The following marking process is applied
iteratively until all regions get labelled: (1) if a re-
gion R contain GCPs of the same disparity and good
distribution, labelR as MATCHED, assignR the dis-
parity and update disparity functionsD, D1 accord-

ingly; (2) if R does not contain GCPs or contains GCPs
of the same disparity value but not good distribution, la-
belR asUNMATCHED; (3) if R contains GCPs with more
than one disparity, splitR and make new regions unla-
belled. If only one region is generated, label it asUN-
MATCHED.

5. Progressive Matching Scheme

Before introducing the progressive scheme, several im-
portant issues are firstly discussed, including the definition
of confidence and ambiguity, how to set ambiguity thresh-
old and the algorithm flexibility and efficiency. The com-
plete progressive matching algorithm is given in Figure 4

Confidence Taking into account the definition of the
cost function (4), it is obvious that the more neighbors get
matched, the more information is available and the more re-
liable matching is possible for a region. Therefore, the con-
fidence for a region is defined as the size of already matched
neighboring pixels. For no biasing towards large region, not
the absolute size but a ratio is used. More specifically, let
contour(R) denote the set of pixel pairs relatingR to its
neighbors,

contour(R) = {(p, q)|p /∈ R ∧ q ∈ R ∧ (p, q) ∈ N},
the confidence ofR is defined as

confidence(R) =
|{(p, q)|(p, q) ∈ contour(R) ∧ p is matched}|

|contour(R)|
(6)

Ambiguity The ambiguity of a region is simply defined
as the ratio of its best and second best matching cost, the
same as in the GCP computation(see Section 3).

The matching cost of a regionR is simply the summa-
tion of the constrained pixel matching cost (4),C(R, d) =∑

p∈R C(p, d). Let dbest
R anddsecond

R be the best and sec-

ond best disparity ofR in terms ofC(R, d), the ambiguity
of R is

ambiguity(R) = C(R, dbest
R )/C(R, dsecond

R ).

Ambiguity Threshold Setting The ambiguity threshold
λamb(as in Section 3) is set empirically initially. In each it-
eration, only those regions with ambiguities lower than the
threshold will be matched. To achieve dense matching, it
has to increase after each iteration. However, it is appar-
ently not favorable to set the increasing amount a constant.

Instead, we take a simple adaptive strategy. A fixed-size
arrayAamb is used to store the expected ambiguity thresh-
olds generated in the current iteration and the new thresh-
old will be set accordingly before next iteration. Intuitively
speaking, only|Aamb| regions with smallest ambiguities
exceeding the current threshold will have their ambiguity
value stored in the array.λamb is set to the maximum value



1. Arrange allUNMATCHEDregions in descending or-
der of confidence (6). SetAamb empty.

2. For each regionR with confidence(R) 6= 0
(a) If ambiguity(R) ≤ λamb, label R as

MATCHEDand assign it the disparitydbest
R . Up-

date disparity functionsD, D1 accordingly and
go to Step 2.

(b) If R contains GCPs with more than one disparity,
split R, label new regions asUNMATCHEDand
go to Step 2.

(c) If there is an entry inAamb empty or with a value
larger thanambiguity(R), set the value of the
entry toambiguity(R).

3. If there are new regions labelled asMATCHED, go to
Step 2.

4. If there areUNMATCHED regions, setλamb to the
maximum value inAamb, go to Step 1; or exit when a
pre-defined condition is met in case that dense match-
ing is not desired.

Figure 4. Progressive matching algorithm.
We use a global best-first strategy which
has two-fold meaning: (1) Regions with larger
confidence are attempted earlier; (2) Regions
with lower ambiguity are accepted earlier.

in the array after the current iteration and those regions will
become matched in the next iteration.

Flexibility Dense matching is obtained whenλamb in-
creases to 1. If reliable sparse matching is desired, the algo-
rithm can be terminated in Step 4 when a pre-defined con-
dition is met, e.g.,λamb reaches a upper bound or desired
matching density is achieved. The size ofAamb controls the
matching speed smoothly. The algorithm accuracy is insen-
sitive when|Aamb| is small(10 in the experiments).

The scheme allows combination with anad-hocpost-
processing algorithm. For example, we can run the graph
cut algorithm [6] for all unmatched pixels using the con-
strained cost function (4) as the data term to handle occlu-
sion, or compute the disparity for unmatched regions using
the greedy algorithm in [21]. While this is beyond the scope
of this paper, it remains as future work.

Efficiency The whole algorithm allows an efficient im-
plementation due to the constant disparity assumption and
the efficient computation of constrained matching cost (4).

Stereo algorithms are roughly classified as global or lo-
cal in [17]. Our algorithm does not involve frequent time-
consuming aggregation of support, compared with a local
algorithm, and does not optimize a global function, com-
pared with a global algorithm. Actually, the most time-

consuming component is the color segmentation and the
progressive step is very fast.

6. Experiment

We evaluated the algorithm on the test bed proposed by
Scharstein and Szeliski [17] that is available on web [1].
The evaluation metric is the percentage of error disparities
differing from the true value more than 1 pixel. Four data
sets, Tsukuba, Sawtooth, Venus, Map, are used for quanti-
tative evaluation while two data sets, Teddy, Cones, are used
for qualitative evaluation.

Parameter settingAll the parameters are fixed for the
first four data sets, including those in the color segmenta-
tion. λamb is empirically chosen as 0.4 initially (also used
in GCP computation). The algorithm consistently performs
well for all data sets whenλsmooth andλocc are less than 6
and we believe this is due to the cost function (1) we used
[2]. We useλocc = 4 andλsmooth = 3 to produce the re-
sults shown in other figures. For Cone and Teddy, due to
the large disparity range, we setλamb to 0.5 initially to ob-
tain higher GCP density.

Running performanceTable 1 summarizes the running
performance obtained on a Pentium IV 1.9G PC. The pro-
gressive part is quite efficient, while most time is consumed
in segmentation step. Since we only tried one segmentation
algorithm currently, it is not clear how the algorithm will
perform using other simpler and faster segmentation algo-
rithms. This remains as future work.

Comparison with Unambiguous Matching Algo-
rithms Due to the difficulty of dense matching, some
researchers turned to investigate the problem of unam-
biguous dense matching [16, 22, 23, 10]. A progres-
sive algorithm naturally performs such a task. Figure 5
shows our intermediate results asλamb increases gradu-
ally.

Settingλamb = 0.8 as a threshold upper bound, table
2 compares our results with those produced by other algo-
rithms. For the first three data sets, our results are obviously
better than [16, 22] and comparable with [23, 10].

Overall Comparison Figure 6 shows the computed
dense disparity maps as well as the ground truth. We ob-
tained very good results for Tsukuba, Sawtooth and
Venus data sets, but less satisfactory for the very tex-
tured Map that can be in fact easily handled by local meth-
ods. Even for the difficult Cones and Teddy, due to their
large disparity range, our algorithm works quite well.

The overall evaluation and comparison on the standard
platform [1] is given in Table 3. The error metric is cal-
culated over three different areas in the image, classified
as untextured(untex), discontinuous(disc) and the entire im-
age(all). Our overall rank is6th out of about 30 algorithms.
There is actually little difference between the top ten algo-



rithms. Although it is not possible to perform a compari-
son of running time, we believe that our algorithm should
be one of the fastest between those methods ranking at top
since most of them are global methods.

7. Conclusions

In this paper, we presented a novel stereo matching al-
gorithm that integrates a region-based representation into a
progressive framework. A robust, flexible and efficient pro-
gressive matching algorithm is developed. It is relatively in-
sensitive to the parameter setting and performs consistently
well for almost all the data sets tested in the experiments.
Evaluation and comparison result shows that our algorithm
is among the state-of-the-art.
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Tsukuba Sawtooth Venus Map Cone Teddy
image size 384× 288 434× 380 434× 383 284× 216 450× 375 450× 375
max disparity 15 21 19 28 55 52
regions initially(finally) 828(966) 1459(1692) 981(1236) 819(1124) 1822(1822) 1636(1636)
iterations 15 25 23 16 37 18

time(segmentation) 21 40 41 13 37 34
time(progressive) 1.07 2.99 4.99 0.73 9.88 5.88

Table 1. Running performance. Time is in seconds.
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Figure 5. Matching density and error rate plotted versus λamb as the algorithm runs progressively.

algorithm Tsukuba Sawtooth Venus Map
D(%) e(%) D(%) e(%) D(%) e(%) D(%) e(%)

our method(λamb = 0.8) 96.3 1.07 91.3 0.24 83.7 0.64 81.2 0.57

sara02 [16] 45.7 1.4 52 1.6 40 0.8 74 0.3
veksler02 [22] 66 0.38 76 1.62 68 1.83 87 0.22
veksler03 [23] 75 0.36 87 0.54 73 0.16 87 0.01
gong03 [10] 85.7 1.07 85 0.41 67.1 0.51 60.8 0.09

Table 2. Comparison of our method with other unambiguous matching algorithms in terms of match-
ing density( D) and error rate( e).

Tsukuba Sawtooth Venus Map
algo all untex disc all untex disc all untex disc all disc
Segm.-based GC[12] 1.23 0.29 6.94 0.30 0.001 3.24 0.081 0.011 1.391 1.49 15.46
Segm.+glob.vis.[4] 1.30 0.48 7.50 0.201 0.001 2.301 0.79 0.81 6.37 1.63 16.07
Layered[15] 1.58 1.06 8.82 0.34 0.001 3.35 1.52 2.96 2.62 0.37 5.24
Belief prop.[19] 1.151 0.42 6.311 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
GCMulCam[13] 1.85 1.94 6.99 0.62 0.001 6.86 1.21 1.96 5.71 0.31 4.34

Our method 1.446 0.556 8.187 0.242 0.001 2.642 0.995 1.378 6.408 1.4920 17.1127

Table 3. Evaluation table(incomplete) on the web [1]. Algorithms are in order of their ranking. Our al-
gorithm ranked 6th out of about thirty algorithms. Subscript number is relative rank in each column.
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Figure 6. Dense disparity maps produced by our method. We obtained very good results for al-
most all data sets except the very textured Map which can be actually easily handled by local meth-
ods. For Teddy and Cones, although very limited initial reliable regions are found, the final results
are very visually satisfactory. Most object details and surface boundaries are finely recovered, in-
cluding the bear and flowers in Teddy, and thin sticks and most cones in Cones, mainly due to the
reasonable segmentation and the robust progressive scheme. The only obvious error observed is in
the middle left of Cones, caused by an early wrong decision.


