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Abstract. We present a very efficient, highly accurate,
“Explicit Shape Regression” approach for face alignment.
Unlike previous regression-based approaches, we directly
learn a vectorial regression function to infer the whole fa-
cial shape (a set of facial landmarks) from the image and
explicitly minimize the alignment errors over the training
data. The inherent shape constraint is naturally encoded in-
to the regressor in a cascaded learning framework and ap-
plied from coarse to fine during the test, without using a
fixed parametric shape model as in most previous methods.

To make the regression more effective and efficient, we
design a two-level boosted regression, shape-indexed fea-
tures and a correlation-based feature selection method. This
combination enables us to learn accurate models from large
training data in a short time (20 minutes for 2,000 training
images), and run regression extremely fast in test (15 m-
s for a 87 landmarks shape). Experiments on challenging
data show that our approach significantly outperforms the
state-of-the-art in terms of both accuracy and efficiency.

1. Introduction

Face alignment or locating semanticfacial landmarks
such as eyes, nose, mouth and chin, is essential for tasks
like face recognition, face tracking, face animation and 3D
face modeling. With the explosive increase in personal and
web photos nowadays, a fully automatic, highly efficient
and robust face alignment method is in demand. Such re-
quirements are still challenging for current approaches in
unconstrained environments, due to large variations on fa-
cial appearance, illumination, and partial occlusions.

A face shapeS = [x1, y1, ..., xNfp , yNfp ]
T consists ofNfp

facial landmarks. Given a face image, the goal of face align-
ment is to estimate a shapeS that is as close as possible to
the true shapêS, i.e., minimizing

||S − Ŝ||2. (1)

The alignment error in Eq.(1) is usually used to guide
the training and evaluate the performance. However, dur-
ing testing, we cannot directly minimize it aŝS is unknown.

According to howS is estimated, most alignment approach-
es can be classified into two categories:optimization-based
andregression-based.

Optimization-basedmethods minimize another error
function that is correlated to (1) instead. Such methods
depend on the goodness of the error function and whether
it can be optimized well. For example, the AAM ap-
proach [13, 16, 17, 3] reconstructs the entire face using an
appearance model and estimates the shape by minimizing
the texture residual. Because the learned appearance mod-
els have limited expressive power to capture complex and
subtle face image variations in pose, expression, and illu-
mination, it may not work well on unseen faces. It is also
well known that AAM is sensitive to the initialization due
to the gradient descent optimization.

Regression-basedmethods learn a regression function
that directly maps image appearance to the target out-
put. The complex variations are learnt from large train-
ing data and testing is usually efficient. However, previ-
ous such methods [6, 19, 7, 16, 17] have certain drawbacks
in attaining the goal of minimizing Eq. (1). Approaches
in [7, 16, 17] rely on a parametric model (e.g., AAM) and
minimize model parameter errors in the training. This is
indirect and sub-optimal because smaller parameter errors
are not necessarily equivalent to smaller alignment errors.
Approaches in [6, 19] learn regressors for individual land-
marks, effectively using (1) as their loss functions. Howev-
er, because only local image patches are used in training and
appearance correlation between landmarks is not exploited,
such learned regressors are usually weak and cannot handle
large pose variation and partial occlusion.

We notice that theshape constraintis essential in all
methods. Only a few salient landmarks (e.g., eye centers,
mouth corners) can be reliably characterized by their im-
age appearances. Many other non-salient landmarks (e.g.,
points along face contour) need help from the shape con-
straint - the correlation between landmarks. Most previous
works use a parametric shape model to enforce such a con-
straint, such as PCA model in AAM [3, 13] and ASM [4, 6].

Despite of the success of parametric shape models, the
model flexibility (e.g., PCA dimension) is often heuristical-
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ly determined. Furthermore, using a fixed shape model in
an iterative alignment process (as most methods do) may al-
so be suboptimal. For example, in initial stages (the shape
is far from the true target), it is favorable to use a restrict-
ed model for fast convergence and better regularization; in
late stages (the shape has been roughly aligned), we may
want to use a more flexible shape model with more subtle
variations for refinement. To our knowledge, adapting such
shape model flexibility is rarely exploited in the literature.

In this paper, we present a novel regression-based ap-
proach without using any parametric shape models. The
regressor is trained by explicitly minimizing the alignmen-
t error over training data in a holistic manner - all facial
landmarks are regressed jointly in a vectorial output. Our
regressor realizes the shape constraint in an non-parametric
manner: the regressed shape is always a linear combina-
tion of all training shapes. Also, using features across the
image for all landmarks is more discriminative than using
only local patches for individual landmarks. These proper-
ties enable us to learn a flexible model with strong expres-
sive power from large training data. We call our approach
“Explicit Shape Regression”.

Jointly regressing the entire shape is challenging in the
presence of large image appearance variations. We design
a boosted regressor toprogressivelyinfer the shape - the
early regressors handle large shape variations and guaran-
tee robustness, while the later regressors handle small shape
variations and ensure accuracy. Thus, the shape constraint
is adaptively enforced from coarse to fine, in an automat-
ic manner. This is illustrated in Figure 1 and elaborated in
Section 2.2.

In the explicit shape regression framework, we fur-
ther designa two-level boosted regression, effectiveshape-
indexed features, and a fastcorrelation-based feature se-
lection methodso that: 1) we can quickly learn accurate
models from large training data (20 mins on 2,000 training
samples); 2) the resulting regressor is extremely efficientin
the test (15 ms for 87 facial landmarks). We show superior
results on several challenging datasets.

2. Face Alignment by Shape Regression

In this section, we introduce our basic shape regression
framework and how to fit it to the face alignment problem.

We use boosted regression [9, 8] to combineT weak re-
gressors(R1, ...Rt, ..., RT ) in an additive manner. Given a
facial imageI and an initial1 face shapeS0, each regressor
computes a shape incrementδS from image features and
then updates the face shape, in a cascaded manner:

St = St−1 +Rt(I, St−1), t = 1, ..., T, (2)

1The initial shape can be simply a mean shape. More details of initial-
ization are discussed in Section 3.

where thetth weak regressorRt updates the previous shape
St−1 to the new shapeSt.

Notice that the regressorRt depends on both imageI
and previous estimated shapeSt−1. As will be described
later, we useshape indexed (image) featuresthat are rela-
tive to previous shape to learn eachRt. Such features can
greatly improve the boosted regression by achieving better
geometric invariance. The similar idea is also used in [7].

GivenN training examples{(Ii, Ŝi)}
N
i=1

, the regressors
(R1, ...Rt, ..., RT ) are sequentially learnt until the training
error no longer decreases. Each regressorRt is learnt by
explicitly minimizing the sum of alignment errors (1) till
then,

Rt = argmin
R

N∑

i=1

||Ŝi − (St−1

i +R(Ii, S
t−1

i ))||, (3)

whereSt−1

i is the estimated shape in previous stage.

2.1. Two-level cascaded regression

Previous methods use simple weak regressors such as a
decision stump [6] or a fern [7] in a similar boosted re-
gression manner. However, in our early experiments, we
found that such regressors are too weak and result in very
slow convergence in training and poor performance in the
testing. We conjecture this is due to the extraordinary dif-
ficulty of the problem: regressing the entire shape (as large
as dozens of landmarks) is too difficult, in the presence of
large image appearance variations and rough shape initial-
izations. A simple weak regressor can only decrease the
error very little and cannot generalize well.

It is crucial to learn a good weak regressor that can
rapidly reduce the error. We propose to learn each weak
regressorRt by a second level boosted regression,i.e.,
Rt = (r1, ...rk, ..., rK). The problem is similar as in (2)(3),
but the key difference is that the shape-indexed image fea-
tures are fixed in the second level,i.e., they are indexed on-
ly relative toSt−1 and no longer change when thoser’s
are learnt2. This is important, as eachr is rather weak and
allowing feature indexing to change frequently is unstable.
Also the fixed features can lead to much faster training, as
will be described later. In our experiments, we found using
two-level boosted regression is more accurate than one lev-
el under the same training effort,e.g., T = 10,K = 500 is
better than one level ofT = 5000, as shown in Table 3.

Below we describe how to learn each weak regressorrk.
For notation clarity, we call it aprimitive regressorand drop
the indexk.

2.2. Primitive regressor

We use afern as our primitive regressorr. The fern was
firstly introduced for classification [15] and later used for

2Otherwise this degenerates to a one level boosted regression.
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regression [7]. A fern is a composition ofF (5 in our im-
plementation) features and thresholds that divide the feature
space (and all training samples) into2F bins. Each binb is
associated with a regression outputδSb that minimizes the
alignment error of training samplesΩb falling into the bin:

δSb = argmin
δS

∑

i∈Ωb

||Ŝi − (Si + δS)||, (4)

whereSi denotes the estimated shape in the previous step.
The solution for (4) is the mean of shape differences,

δSb =

∑
i∈Ωb

(Ŝi − Si)

|Ωb|
. (5)

To overcome over-fitting in the case of insufficient train-
ing data in the bin, a shrinkage is performed [9, 15] as

δSb =
1

1 + β/|Ωb|

∑
i∈Ωb

(Ŝi − Si)

|Ωb|
, (6)

whereβ is a free shrinkage parameter. When the bin has
sufficient training samples,β makes little effect; otherwise,
it adaptively reduces the estimation.

Non-parametric shape constraint By learning a vector
regressor and explicitly minimizing the shape alignment er-
ror (1), the correlation between the shape coordinates is p-
reserved. Because each shape update is additive as in Eq.
(2), and each shape increment is the linear combination of
certain training shapes{Ŝi} as in Eq. (5) or (6), it is easy to
see that the final regressed shapeS can be expressed as the
initial shapeS0 plus the linear combination of all training
shapes:

S = S0 +

N∑

i=1

wiŜi. (7)

Therefore, as long as the initial shapeS0 satisfies the
shape constraint,the regressed shape is always constrained
to reside in the linear subspace constructed by all training
shapes. In fact, any intermediate shape in the regression al-
so satisfies the constraint. Compare to the pre-fixed PCA
shape model, the non-parametric shape constraint is adap-
tively determined during the learning.

To illustrate the adaptive shape constraint, we perform
PCA on all the shape increments stored in all primitive fern
regressors (2F × K in total) for each first level regressor
Rt. As shown in Figure 1, the intrinsic dimension (by re-
taining95% energy) of such shape spaces increases during
the learning. Therefore,the shape constraint is automati-
cally encoded in the regressors in a coarse to fine manner.
Figure 1 also shows the first three principal components of
the learnt shape increments (plus a mean shape) in first and
final stage. As shown in Figure 1(c)(d), the shape updates
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Figure 1. Shape constraint is preserved and adaptively learned in
a coarse to fine manner in our boosted regressor. (a) The shapeis
progressively refined by the shape increments learnt by the boosted
regressors in different stages. (b) Intrinsic dimensions of learnt
shape increments in a 10-stage boosted regressor, using 87 facial
landmarks. (c)(d) The first three principal components (PCs) of
shape increments in the first and final stage, respectively.

learned by the first stage regressor are dominated by glob-
al rough shape changes such as yaw, roll and scaling. In
contrast, the shape updates of the final stage regressor are
dominated by the subtle variations such as face contour, and
motions in the mouth, nose and eyes.

2.3. Shape-indexed (image) features

For efficient regression, we use simple pixel-difference
features,i.e., the intensity difference of two pixels in the
image. Such features are extremely cheap to compute and
powerful enough given sufficient training data [15, 18, 7].
A pixel is indexed relative to the currently estimated shape
rather than the original image coordinates. The similar idea
can also be found in [7]. This achieves better geometric
invariance and in turn leads to easier regression problems
and faster convergence in boosted learning.

To achieve feature invariance against face scales and ro-
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Figure 2. Pixels indexed by the same local coordinates have the
same semantic meaning (a), but pixels indexed by the same glob-
al coordinates have different semantic meanings due to the face
shape variation (b).

tations, we first compute a similarity transform to normal-
ize the current shape to a mean shape, which is estimated
by least squares fitting of all facial landmarks. Previous
works [6, 19, 16] need to transform the image correspond-
ingly to compute Harr like features. In our case, we instead
transform the pixel coordinates back to the original image
to compute pixel-difference features, which is much more
efficient.

A simple way to index a pixel is to use itsglobal co-
ordinates(x, y) in the canonical shape. This is good for
simple shapes like ellipses, but it is insufficient for non-
rigid face shapes. Because most useful features are dis-
tributed around salient landmarks such as eyes, nose and
mouth (e.g., a good pixel difference feature could be “eye
center is darker than nose tip” or “two eye centers are sim-
ilar”), and landmarks locations can vary for different faces
3d-poses/expressions/identities. In this work, we suggest to
index a pixel by itslocal coordinates(δx, δy) with respect
to its nearest landmark. As Figure 2 shows, such indexing
holds invariance against the variations mentioned above and
make the algorithm robust.

For each weak regressorRt in the first level, we random-
ly sample3 P pixels. In totalP 2 pixel-difference features
are generated. Now, the new challenge is how to quickly
select effective features from such a large pool.

2.4. Correlation-based feature selection

To form a good fern regressor,F out ofP 2 features are s-
elected. Usually, this is done by randomly generating a pool
of ferns and selecting the one with minimum regression er-
ror as in (4) [15, 7]. We denote this method asn-Best, where
n is the size of the pool. Due to the combinatorial explosion,
it is unfeasible to evaluate (4) for all of the compositional
features. As illustrated in Table 4, the error is only slight-
ly reduced by increasingn from 1 to 1024, but the training
time is significantly longer.

To better explore the huge feature space in a short time
and generate good candidate ferns, we exploit thecorrela-
tion between features and the regression target. The target

3We left for future work how to exploit a prior distribution that favors
salient regions (e.g., eyes or mouth) for more effective feature generation.

is vectorial delta shape which is the difference between the
groundtruth shape and current estimated shape. We expec-
t that a good fern should satisfy two properties: (1) each
feature in the fern should be highly discriminative to the re-
gression target; (2) correlation between features should be
low so they are complementary when composed.

To find features satisfying such properties, we propose a
correlation-based feature selection method:

1. Project the regression target(vectorial delta shape) toa
random direction to produce a scalar.

2. AmongP 2 features, select a feature with highest cor-
relation to the scalar.

3. Repeat steps 1. and 2.F times to obtainF features.

4. Construct a fern byF features with random thresholds.

The random projection serves two purposes: it can pre-
serve proximity [2] such that the features correlated to the
projection are also discriminative to delta shape; the multi-
ple projections have low correlations with a high probabili-
ty and the selected features are likely to be complementary.
As shown in Table 4, the proposed correlation based method
can select good features in a short time and is much better
than the n-Best method.

Fast correlation computation At first glance, we need
to compute the correlation ofP 2 features with a scalar in
step 2, which is still expensive. Fortunately the compu-
tational complexity can be reduced fromO(P 2) to O(P )
by the following facts: The correlation between a scalary
and a pixel-difference feature(fi − fj) can be represent-
ed as the function of three terms:cov(fi, fj), cov(y, fi),
and cov(y, fj). As all shape indexed pixels are fixed for
the first-level regressorRt, the first termcov(fi, fj) can
be reused for all primitive regressors under the sameRt.
Therefore, the feature correlation computation time is re-
duced to that of computing the covariances between a scalar
andP different pixels, which isO(P ).

3. Implementation details

We discuss more implementation details, including the
shape initialization in training and testing, parameter setting
and running performance.

Training data augmentationEach training sample con-
sists of a training image, an initial shape and a ground truth
shape. To achieve better generalization ability, we augmen-
t the training data by randomly sampling multiple (20 in
our implementation) shapes of other annotated images as
the initial shapes of each training image. This is found to
be very effective in obtaining robustness against large pose
variation and rough initial shapes during the testing.

Multiple initializations in testing The regressor can
give reasonable results with different initial shapes for atest
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Figure 3. Left: results of 5 facial landmarks from multiple runs
with different initial shapes. The distribution indicatesthe esti-
mation confidence: left eye and left mouth corner estimations are
widely scattered and less stable, due to the local appearance nois-
es. Right: the average alignment error increases as the standard
deviation of multiple results increases.

image and the distribution of multiple results indicates the
confidence of estimation. As shown in Figure 3, when mul-
tiple landmark estimations are tightly clustered, the result is
accurate, and vice versa. In the test, we run the regressor
several times (5 in our implementation) and take the medi-
an result4 as the final estimation. Each time the initial shape
is randomly sampled from the training shapes. This further
improves the accuracy.

Running time performance Table 1 summarizes the
computational time of training (with2, 000 training images)
and testing for different number of landmarks. Our training
is very efficient due to the fast feature selection method.
It takes minutes with40, 000 training samples (20 initial
shapes per image), The shape regression in the test is ex-
tremely efficient because most computation is pixel com-
parison, table look up and vector addition. It takes only15
ms for87 landmarks (3 ms× 5 initializations).

Landmarks 5 29 87
Training (mins) 5 10 21
Testing (ms) 0.32 0.91 2.9

Table 1. Training and testing times of our approach, measured on
an Intel Core i7 2.93GHz CPU with C++ implementation.

Parameter settingsThe number of features in a fernF
and the shrinkage parameterβ adjust the trade off between
fitting power in training and generalization ability in testing.
They are set asF = 5, β = 1000 by cross validation.

Algorithm accuracy consistently increases as the num-
ber of stages in the two-level boosted regression (T ,K) and
number of candidate featuresP 2 increases. Such parame-
ters are empirically chosen asT = 10,K = 500, P = 400

4The median operation is performed on x and y coordinates of all land-
marks individually. Although this may violate the shape constraint men-
tioned before, the resulting median shape is mostly correctas in most cases
the multiple results are tightly clustered. We found such a simple median
based fusion is comparable to more sophisticated strategies such as weight-
ed combination of input shapes.

for a good tradeoff between computational cost and accura-
cy.

4. Experiments

The experiments are performed in two parts. The first
part compares our approach with previous works. The sec-
ond part validates the proposed approach and presents some
interesting discussions.

We briefly introduce the three datasets used in the exper-
iments. They present different challenges, due to different
numbers of annotated landmarks and image variations.

BioID [11] dataset is widely used by previous methods. It
consists of 1,521 near frontal face images captured in a lab
environment, and is therefore less challenging. We report
our result on it for completeness.

LFPW (Labeled Face Parts in the Wild) was created
in [1]. Its images are downloaded from internet and con-
tain large variations in pose, illumination, expression and
occlusion. It is intended to test the face alignment method-
s in unconstraint conditions. This dataset shares only web
image URLs, but some URLs are no longer valid. We on-
ly downloaded 812 of the 1,100 training images and 249 of
the 300 test images. To acquire enough training data, we
augment the training images to 2,000 in the same way as in
[1] and use the available test images.

LFW87 was created in [12]. The images mainly come
from the LFW(Labeled Face in the Wild) dataset[10], which
is acquired from wild conditions and is widely used in face
recognition. In addition, it has 87 annotated landmarks,
much more than that in BioID and LFPW, therefore, the
performance of an algorithm relies more on its shape con-
straint. We use the same 4,002 training and 1,716 testing
images as in [12].

4.1. Comparison with previous work

For comparisons, we use the alignment error in Eq.(1) as
the evaluation metric. To make it invariant to face size, the
error is not in pixels but normalized by the distance between
the two pupils, similar to most previous works.

The following comparison shows that our approach out-
performs the state of the art methods in both accuracy and
efficiency, especially on the challenging LFPW and LFW87
datasets. Figure 7, 8, and 9 show our results on challenging
examples with large variations in pose, expression, illumi-
nation and occlusion from the three datasets.

Comparison to [1] on LFPW The consensus exemplar
approach [1] is one of the state of the art methods. It was the
best on BioID when published, and obtained good results on
LFPW.

Comparison in Figure 4 shows that most landmarks es-
timated by our approach are more than10% accurate5

5The relative improvement is the ratio between the error reduction by
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Figure 4. Results on the LFPW dataset. Left: 29 facial landmark-
s. The circle radius is the average error of our approach. Point
color represents relative accuracy improvement over [1]. Green:
more than10% more accurate. Cyan:0% to 10% more accurate.
Red: less accurate. Right top: relative accuracy improvement of
all landmarks over [1]. Right bottom: average error of all land-
marks.

than [1] and our overall error is smaller.
In addition, our method isthousands of times faster. It

takes around 5ms per image (0.91× 5 initializations for 29
landmarks). The method in [1] uses expensive local land-
mark detectors (SIFT+SVM) and it takes more than 10 sec-
onds6 to run 29 detectors over the entire image.

Comparison to [12] on LFW87 Liang et al.[12] train a
set of direction classifiers for pre-defined facial components
to guide the ASM search direction. Their algorithm out-
perform previous ASM and AAM based works by a large
margin.

We use the same RMSE (Root Mean Square Error)
in [12] as the evaluation metric. Table 2 shows our method
is significantly better. For the strict error threshold (5 pix-
els), the error rate is reduced nearly by half, from25.3%
to 13.9%. The superior performance on a large number
of landmarks verifies the effectiveness of proposed holistic
shape regression and the encoded adaptive shape constraint.

RMSE < 5 pixels < 7.5 pixels < 10 pixels
Method in [12] 74.7% 93.5% 97.8%
Our Method 86.1% 95.2% 98.2%

Table 2. Percentages of test images with RMSE(Root Mean Square
Error) less than given thresholds on the LFW87 dataset.

Comparison to previous methods on BioIDOur model
is trained on augmented LPFW training set and tested on the
entire BioID dataset.

Figure 5 compares our method with previous method-
s [20, 5, 14, 19, 1]. Our result is the best but the improve-

our method and the original error.
6It is discussed in [1] as: ”The localizer requires less than one second

per fiducial on an Intel Core i7 3.06GHz machine”. We conjecture that it
takes more than 10 seconds to locate 29 landmarks.
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Figure 5. Cumulative error curves on the BioID dataset. For com-
parison with previous results, only 17 landmarks are used [5]. As
our model is trained on LFPW images, for those landmarks with
different definitions between the two datasets, a fixed offset is ap-
plied in the same way as in [1].

ment is marginal. We believe this is because the perfor-
mance on BioID is nearly maximized due to its simplicity.
Note that our method is thousands of times faster than the
second best method in [1].

4.2. Algorithm validation and discussions

We verify the effectiveness of different components of
the proposed approach. Such experiments are performed on
the augmented LPFW dataset, using 1,500 images for train-
ing and 500 for testing. Parameters are fixed as in Section 3,
unless otherwise noted.

Two-level cascaded regressionAs discussed in Sec-
tion 2, the first level regression exploits shape indexed fea-
tures to obtain geometric invariance and decompose the o-
riginal difficult problem into easier sub-tasks. The second
level regression inhibits such features to avoid instability.

Different tradeoffs between two-level cascaded regres-
sion are presented in Table 3, using the same number of
primitive regressors. On one extreme, not using shape in-
dexed features (T = 1,K = 5000) is clearly the worst. On
the other extreme, using such features for every primitive
regressor (T = 5000,K = 1) also has poor generalization
ability in the test. The optimal tradeoff (T = 10,K = 500)
is found in between via cross validation.

#stages in level 1 (T) 1 5 10 100 5000
#stages in level 2 (K) 5000 1000 500 50 1
Mean Error (×10−2) 15 6.2 3.3 4.5 5.2

Table 3. Tradeoffs between two levels cascaded regression.

Shape indexed featureWe compare the global and local
methods of shape indexed features. The mean error of local
index method is 0.033, which is much smaller than the mean
error of global index method 0.059. The superior accuracy
supports the proposed local index method.
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Feature selectionThe proposed correlation based fea-
ture selection method (CBFS) is compared with the com-
monly usedn-bestmethod [15, 7] in Table 4. CBFS can
select good features rapidly and this is crucial to learn good
models from large training data.

1-Best 32-Best 1024-Best CBFS
Error (×10−2) 5.01 4.92 4.83 3.32
Time (s) 0.1 3.0 100.3 0.12

Table 4. Comparison between correlation based feature selec-
tion(CBFS) method and n-Best feature selection methods. The
training time is for one primitive regressor.

Feature rangeTherangeof a feature is the distance be-
tween the pair of pixels normalized by the distance between
the two pupils. Figure 6 shows the average ranges of se-
lected features in the 10 stages of the first level regressors.
As observed, the selected features are adaptive to the dif-
ferent regression tasks. At first, long range features (e.g.,
one pixel on the mouth and the other on the nose) are often
selected for rough shape adjustment. Later, short range fea-
tures (e.g., pixels around the eye center) are often selected
for fine tuning.
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In stage 1, 5 and 10, an exemplar feature (a pixel pair) is displayed
on an image.

5. Discussion and Conclusion

We have presented the explicit shape regression method
for face alignment. By jointly regressing the entire shape
and minimizing the alignment error, the shape constraint is
automatically encoded. The resulting method is highly ac-
curate, efficient, and can be used in real time applications
such as face tracking. The explicit shape regression frame-
work can also be applied to other problems like articulated
object pose estimation and anatomic structure segmentation
in medical images.
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Figure 7. Selected results from LFPW.

Figure 8. Selected results from LFW87.

Figure 9. Selected results from BioID.
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