Face Alignment by Explicit Shape Regression

Xudong Cao Yichen Wei Fang Wen Jian Sun
Microsoft Research Asia

{xudongca, yi chenw, f angwen, j i ansun}@ri cr osoft. com

Abstract. We present a very efficient, highly accurate, Accordingto howS is estimated, most alignment approach-
“Explicit Shape Regression” approach for face alignment. es can be classified into two categorieptimization-based
Unlike previous regression-based approaches, we directlyandregression-based
learn a vectorial regression function to infer the whole fa-  Optimization-basedmethods minimize another error
cial shape (a set of facial landmarks) from the image andfunction that is correlated to (1) instead. Such methods
explicitly minimize the alignment errors over the training depend on the goodness of the error function and whether
data. The inherent shape constraint is naturally encoded init can be optimized well. For example, the AAM ap-
to the regressor in a cascaded learning framework and approach [13, 16, 17, 3] reconstructs the entire face using an
plied from coarse to fine during the test, without using a appearance model and estimates the shape by minimizing
fixed parametric shape model as in most previous methodsthe texture residual. Because the learned appearance mod-

To make the regression more effective and efficient, we els have limited expressive power to capture complex and
design a two-level boosted regression, shape-indexed feasubtle face image variations in pose, expression, and illu-
tures and a correlation-based feature selection methad. Th mination, it may not work well on unseen faces. It is also
combination enables us to learn accurate models from largewell known that AAM is sensitive to the initialization due
training data in a short time (20 minutes for 2,000 training to the gradient descent optimization.
images), and run regression extremely fast in test (15 m- Regression-basethethods learn a regression function
s for a 87 landmarks shape). Experiments on challengingthat directly maps image appearance to the target out-
data show that our approach significantly outperforms theput. The complex variations are learnt from large train-
state-of-the-art in terms of both accuracy and efficiency.  ing data and testing is usually efficient. However, previ-

ous such methods [6, 19, 7, 16, 17] have certain drawbacks
1. Introduction in attaining the goal of minimizing Eq. (1). Approaches
in [7, 16, 17] rely on a parametric model.§, AAM) and

Face alignment or locating semantacial landmarks ~ minimize model parameter errors in the training. This is
such as eyes, nose, mouth and chin, is essential for taskfdirect and sub-optimal because smaller parameter errors
like face recognition, face tracking, face animation and 3D are not necessarily equivalent to smaller alignment errors
face modeling. With the explosive increase in personal and Approaches in [6, 19] learn regressors for individual land-
web photos nowadays, a fully automatic, highly efficient marks, effectively using (1) as their loss functions. Howev
and robust face alignment method is in demand. Such re-er, because only local image patches are used in training and
quirements are still challenging for current approaches in appearance correlation between landmarks is not exploited
unconstrained environments, due to large variations on fa-such learned regressors are usually weak and cannot handle
cial appearance, illumination, and partial occlusions. large pose variation and partial occlusion.

Aface shap& = [21, Y1, ..., Ty, Yny,) - CONSists 0V, We notice that theshape constraints essential in all
facial landmarks. Given a face image, the goal of face align- methods. Only a few salient landmarksd, eye centers,
ment is to estimate a shapethat is as close as possible to  mouth corners) can be reliably characterized by their im-

the true shap#, i.e., minimizing age appearances. Many other non-salient landmarkgs (
points along face contour) need help from the shape con-
1S = 5. (1) straint - the correlation between landmarks. Most previous

works use a parametric shape model to enforce such a con-
The alignment error in Eq.(1) is usually used to guide straint, such as PCA modelin AAM [3, 13] and ASM [4, 6].
the training and evaluate the performance. However, dur- Despite of the success of parametric shape models, the
ing testing, we cannot directly minimize it &s unknown. model flexibility (e.g, PCA dimension) is often heuristical-



ly determined. Furthermore, using a fixed shape model inwhere thetth weak regressak’ updates the previous shape
an iterative alignment process (as most methods do) may al-S*~! to the new shap#§®.
so be suboptimal. For example, in initial stages (the shape Notice that the regressde’ depends on both image
is far from the true target), it is favorable to use a restrict and previous estimated shag&!. As will be described
ed model for fast convergence and better regularization; inlater, we useshape indexed (image) featurémt are rela-
late stages (the shape has been roughly aligned), we mayive to previous shape to learn eah. Such features can
want to use a more flexible shape model with more subtle greatly improve the boosted regression by achieving better
variations for refinement. To our knowledge, adapting such geometric invariance. The similar idea is also used in [7].
shape model flexibility is rarely exploited in the literagur Given N training examples(Z;, S;)}¥ ,, the regressors
In this paper, we present a novel regression-based ap{R!,...R!, ..., RT) are sequentially learnt until the training
proach without using any parametric shape models. Theerror no longer decreases. Each regreggors learnt by
regressor is trained by explicitly minimizing the alignmen explicitly minimizing the sum of alignment errors (1) till
t error over training data in a holistic manner - all facial then,
landmarks are regressed jointly in a vectorial output. Our N
regressQr realizes the shape constraintin an non-paiametr o _ arg minz ||§1_ (SR RILSTY)L Q)
manner:the regressed shape is always a linear combina- R
tion of all training shapes Also, using features across the
image for all landmarks is more discriminative than using whereS! ! is the estimated shape in previous stage.
only local patches for individual landmarks. These proper-
ties enable us to learn a flexible model with strong expres-
sive power from large training data. We call our approach  Previous methods use simple weak regressors such as a
“Explicit Shape Regression”. decision stump [6] or a fern [7] in a similar boosted re-
Jointly regressing the entire shape is challenging in thegression manner. However, in our early experiments, we
presence of large image appearance variations. We desigfound that such regressors are too weak and result in very
a boosted regressor fwogressivelyinfer the shape - the  slow convergence in training and poor performance in the
early regressors handle large shape variations and guarartesting. We conjecture this is due to the extraordinary dif-
tee robustness, while the later regressors handle smaksha ficulty of the problem: regressing the entire shape (as large
variations and ensure accuracy. Thus, the shape constrairas dozens of landmarks) is too difficult, in the presence of
is adaptively enforced from coarse to fine, in an automat- large image appearance variations and rough shape initial-
ic manner. This is illustrated in Figure 1 and elaborated in izations. A simple weak regressor can only decrease the

i=1

2.1. Two-level cascaded regression

Section 2.2. error very little and cannot generalize well.
In the explicit shape regression framework, we fur- It is crucial to learn a good weak regressor that can
ther desigra two-level boosted regressioeifectiveshape- rapidly reduce the error. We propose to learn each weak

indexed featuresand a fastcorrelation-based feature se- regressorR! by a second level boosted regressioe,,
lection methodso that: 1) we can quickly learn accurate R! = (r',..r*,...,rK). The problemis similar as in (2)(3),
models from large training data (20 mins on 2,000 training but the key difference is that the shape-indexed image fea-
samples); 2) the resulting regressor is extremely effigient  tures are fixed in the second levied,, they are indexed on-
the test (15 ms for 87 facial landmarks). We show superior ly relative to S‘~! and no longer change when those

results on several challenging datasets. are learnt. This is important, as eachis rather weak and
allowing feature indexing to change frequently is unstable
2. Face Alignment by Shape Regression Also the fixed features can lead to much faster training, as

will be described later. In our experiments, we found using
In this section, we introduce our basic shape regressionyyo-level boosted regression is more accurate than one lev-
framework and how to fit it to the face alignment problem.  e| under the same training effoet,g, 7 = 10, K = 500 is
We use boosted regression [9, 8] to comldiheeak re-  better than one level &F = 5000, as shown in Table 3.
gressorgR',..R', ..., R") in an additive manner. Given a Below we describe how to learn each weak regressor

facial imagel and an initiat face shape&®, each regressor  For notation clarity, we call it @rimitive regressoand drop
computes a shape incremeiff from image features and the indexk.

then updates the face shape, in a cascaded manner: o
2.2. Primitive regressor

St=g8"1 L RN(1,8"Y), t=1,..,T, 2 We use dern as our primitive regresset. The fern was
firstly introduced for classification [15] and later used for

1The initial shape can be simply a mean shape. More detaitsitisfli
ization are discussed in Section 3. 20therwise this degenerates to a one level boosted regnessio




regression [7]. A fern is a composition &f (5 in our im-
plementation) features and thresholds that divide theifeat
space (and all training samples) it bins. Each birb is
associated with a regression outp$t, that minimizes the
alignment error of training samplég, falling into the bin:

0Sp = arg min Z ||§1 — (S; +99), 4) (a)Explicit shape regression
05 ea, ‘ ‘ ‘ ‘
30¢ ]
whereS; denotes the estimated shape in the previous step.
The solution for (4) is the mean of shape differences, $ 20t :
3+
(S-S, 10} 1
58, = M (5) . ‘ ‘ ‘
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To overcome over-fitting in the case of insufficient train- (b) #Principal Components in different Stages

ing data in the bin, a shrinkage is performed [9, 15] as S =

1 Zienb(gi —54)

&
59, = , 6 PC2 PC2
RNV 1973 ©) .
whereg is a free shrinkage parameter. When the bin has PC1 \@j PCl@
sufficient training samples; makes little effect; otherwise, pC3 PC3

it adaptively reduces the estimation.

=
Non-parametric shape constraint By learning a vector

regressor and explicitly minimizing the shape alignment er (c) PCs in first stage (d) PCs in final stage

ror (1), the correlation between the shape coordinates is p-

reserved. Because each shape update is additive as in Eq.

(2), and each shape increment is the linear combination ofFigure 1. Shape constraint is preserved and adaptivelpdean
certain training shap€sS; } as in Eq. (5) or (6), itis easy to  a coarse to fine manner in our boosted regressor. (a) The &hape
see that the final regressed shapean be expressed as the progressively refined by the shape increments learnt byabsted
initial shapeS® plus the linear combination of all training  regressors in different stages. (b) Intrinsic dimensiohtearnt

shapes: shape increments in a 10-stage boosted regressor, usirgiay f
N landmarks. (c)(d) The first three principal components |R&Es
S =50+ Z w;S;. (7) shape increments in the first and final stage, respectively.
i=1

Theref | he initial shag@ satisfies th learned by the first stage regressor are dominated by glob-
h ereloré, as long as t Z'nr']t'a S ab; satisfies 1 € q al rough shape changes such as yaw, roll and scaling. In
shape constrainthie regressed shape is always constraine contrast, the shape updates of the final stage regressor are

to reside in the linear subspace constructed by all training dominated by the subtle variations such as face contour, and
shapesin fact, any intermediate shape in the regression al- motions in the mouth, nose and eyes

so satisfies the constraint. Compare to the pre-fixed PCA
s_hape model_, the no_n-parametric_ shape constraint is adapy 3 Shape-indexed (image) features
tively determined during the learning.

To illustrate the adaptive shape constraint, we perform  For efficient regression, we use simple pixel-difference
PCA on all the shape increments stored in all primitive fern features,i.e., the intensity difference of two pixels in the
regressorsA” x K in total) for each first level regressor image. Such features are extremely cheap to compute and
Rt. As shown in Figure 1, the intrinsic dimension (by re- powerful enough given sufficient training data [15, 18, 7].
taining 95% energy) of such shape spaces increases during? pixel is indexed relative to the currently estimated shape
the learning. Thereforehe shape constraint is automati- rather than the original image coordinates. The similaaide
cally encoded in the regressors in a coarse to fine manner can also be found in [7]. This achieves better geometric
Figure 1 also shows the first three principal components ofinvariance and in turn leads to easier regression problems
the learnt shape increments (plus a mean shape) in first an@nd faster convergence in boosted learning.
final stage. As shown in Figure 1(c)(d), the shape updates To achieve feature invariance against face scales and ro-



is vectorial delta shape which is the difference between the
groundtruth shape and current estimated shape. We expec-
t that a good fern should satisfy two properties: (1) each
feature in the fern should be highly discriminative to the re
gression target; (2) correlation between features shoaild b
low so they are complementary when composed.

(b) To find features satisfying such properties, we propose a

Figure 2. Pixels indexed by the same local coordinates Have t correlation-based feature selection method:

same semantic meaning (a), but pixels indexed by the sarbe glo 1 project the regression target(vectorial delta shape) to
al coordinates have different semantic meanings due toate f random direction to produce a scalar
shape variation (b). '

) _ o 2. AmongP? features, select a feature with highest cor-
tations, we first compute a similarity transform to normal- relation to the scalar.

ize the current shape to a mean shape, which is estimated
by least squares fitting of all facial landmarks. Previous 3. Repeatsteps 1. andZ.times to obtaint” features.
works [6, 19, 16] need to transform the image correspond-
ingly to compute Harr like features. In our case, we instead
transform the pixel coordinates back to the original image  The random projection serves two purposes: it can pre-
to compute pixel-difference features, which is much more serve proximity [2] such that the features correlated to the
efficient. projection are also discriminative to delta shape; the imult

A simple way to index a pixel is to use itlobal co- ple projections have low correlations with a high probabili
ordinates(z, y) in the canonical shape. This is good for ty and the selected features are likely to be complementary.
simple shapes like ellipses, but it is insufficient for non- As shown in Table 4, the proposed correlation based method
rigid face shapes. Because most useful features are disean select good features in a short time and is much better
tributed around salient landmarks such as eyes, nose anthan the n-Best method.
mouth €.g, a good pixel difference feature could be “eye Fast correlation computation At first glance, we need
center is darker than nose tip” or “two eye centers are sim-to compute the correlation dP? features with a scalar in
ilar”), and landmarks locations can vary for different face step 2, which is still expensive. Fortunately the compu-
3d-poses/expressions/identities. In this work, we sugges tational complexity can be reduced frod( P?) to O(P)
index a pixel by itdocal coordinategdx, dy) with respect by the following facts: The correlation between a scalar
to its nearest landmark. As Figure 2 shows, such indexingand a pixel-difference featurg; — f;) can be represent-
holds invariance against the variations mentioned abode an ed as the function of three termsov(f;, f;), cov(y, f),
make the algorithm robust. andcov(y, f;). As all shape indexed pixels are fixed for

For each weak regressaf in the first level, we random-  the first-level regressoR?, the first termcov(f;, f;) can
ly samplé P pixels. In totalP? pixel-difference features be reused for all primitive regressors under the sathe
are generated. Now, the new challenge is how to quickly Therefore, the feature correlation computation time is re-
select effective features from such a large pool. duced to that of computing the covariances between a scalar
andP different pixels, which i< (P).

4. Construct a fern by’ features with random thresholds.

2.4. Correlation-based feature selection

To form a good fern regressdr,out of P2 features ares- ~ 3- Implementation details
elected. Usually, this is done by randomly generating a pool
of ferns and selecting the one with minimum regression er-
rorasin (4) [15, 7]. We denote this methodeaBestwhere
n is the size of the pool. Due to the combinatorial explosion,
it is unfeasible to evaluate (4) for all of the compositional
features. As illustrated in Table 4, the error is only slight

We discuss more implementation details, including the
shape initialization in training and testing, parametéirsg
and running performance.

Training data augmentation Each training sample con-
sists of a training image, an initial shape and a ground truth
X _ = shape. To achieve better generalization ability, we augmen
ly reduced by increasing from 1 to 1024, but the training ¢ e training data by randomly sampling multiple (20 in
time is significantly longer. _ _our implementation) shapes of other annotated images as

To better explore the huge feature space in a short timey,q initial shapes of each training image. This is found to

and generate good candidate ferns, we exploictresla- be very effective in obtaining robustness against large pos
tion between features and the regression target. The targef, iation and rough initial shapes during the testing.

3\We left for future work how to exploit a prior distributionadhfavors _ Multiple initializations .in t?Sting The regressor can
salient regionsd.g, eyes or mouth) for more effective feature generation. ~ give reasonable results with different initial shapes fast




\ T for a good tradeoff between computational cost and accura-
50.06 T cy.
53]
goo 4. Experiments
‘E"o.oz The experiments are performed in two parts. The first
< 3 part compares our approach with previous works. The sec-
% 002 o004 006 008 o4 pnd par_t vali(_jates t_he proposed approach and presents some
Std of multiple results interesting discussions.
Figure 3. Left: results of 5 facial landmarks from multiplens . We briefly introduce the three datasets used in the_ exper-
with different initial shapes. The distribution indicaté esti- ~ Iments. They present different challenges, due to differen
mation confidence: left eye and left mouth corner estimatime numbers of annotated landmarks and image variations.
widely scattered and less stable, due to the local appearais- BiolD[11] dataset is widely used by previous methods. It
es. Right: the average alignment error increases as thdasthn  consists of 1,521 near frontal face images captured in a lab
deviation of multiple results increases. environment, and is therefore less challenging. We report

our result on it for completeness.
image and the distribution of multiple results indicates th LFPW (Labeled Face Parts in the Wild) was created
confidence of estimation. As shown in Figure 3, when mul- in [1]. Its images are downloaded from internet and con-
tiple landmark estimations are tightly clustered, theltdsu  tain large variations in pose, illumination, expressionl an
accurate, and vice versa. In the test, we run the regressopcclusion. It is intended to test the face alignment method-
several times (5 in our implementation) and take the medi- s in unconstraint conditions. This dataset shares only web
an resuft as the final estimation. Each time the initial shape image URLs, but some URLs are no longer valid. We on-
is randomly sampled from the training shapes. This further ly downloaded 812 of the 1,100 training images and 249 of
improves the accuracy. the 300 test images. To acquire enough training data, we

Running time performance Table 1 summarizes the augment the training images to 2,000 in the same way as in

computational time of training (with, 000 training images)  [1] and use the available test images.
and testing for different number of landmarks. Our training ~ LFW87 was created in [12]. The images mainly come
is very efficient due to the fast feature selection method. from the LFW(Labeled Face in the Wild) dataset[10], which
It takes minutes witht0, 000 training samples20 initial is acquired from wild conditions and is widely used in face
shapes per image), The shape regression in the test is execognition. In addition, it has 87 annotated landmarks,
tremely efficient because most computation is pixel com- much more than that in BiolD and LFPW, therefore, the
parison, table look up and vector addition. It takes arlly ~ performance of an algorithm relies more on its shape con-
ms for87 landmarks (3 ms 5 initializations). straint. We use the same 4,002 training and 1,716 testing

images as in [12].

Landmarks 5 29 | 87 . . .
Training (mins)| 5 10 | 21 4.1. Comparison with previous work
Testing(ms) | 0.32] 0.91| 2.9 For comparisons, we use the alignment error in Eq.(1) as
Table 1. Training and testing times of our approach, medsome  the evaluation metric. To make it invariant to face size, the
an Intel Core i7 2.93GHz CPU with C++ implementation. error is not in pixels but normalized by the distance between
_ ) the two pupils, similar to most previous works.
Parameter settingsThe number of features in a fein The following comparison shows that our approach out-

and the shrinkage parameféadjust the trade off between  erforms the state of the art methods in both accuracy and
fitting power in training and generalization a.b|I|ty in o). efficiency, especially on the challenging LFPW and LFW87
They are seta$’ = 5, 5 = 1000 by cross validation. datasets. Figure 7, 8, and 9 show our results on challenging

Algorithm accuracy consistently increases as the num-examples with large variations in pose, expression, itumi
ber of stages in the two-level boosted regressioik() and  npation and occlusion from the three datasets.

number of candidate featuré¥ increases. Such parame- Comparison to [1] on LFPW The consensus exemplar
ters are empirically chosen ds= 10, K = 500, P = 400 approach [1] is one of the state of the art methods. It was the
best on BiolD when published, and obtained good results on
4The median operation is performed on x and y coordinated tfral- LEFPW
marks individually. Although this may violate the shape stoaint men- ) . . .
tioned before, the resulting median shape is mostly coa®it most cases Comparison in Figure 4 shows that most landmarks es-

the multiple results are tightly clustered. We found suchmpte median timated by our approach are more th&a@% accuraté
based fusion is comparable to more sophisticated strategih as weight-
ed combination of input shapes. 5The relative improvement is the ratio between the error cto by
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Figure 5. Cumulative error curves on the BiolD dataset. eon-c
parison with previous results, only 17 landmarks are usgd4$s

our model is trained on LFPW images, for those landmarks with
different definitions between the two datasets, a fixed biésep-
plied in the same way as in [1].

ment is marginal. We believe this is because the perfor-

than [1] and our overall error is smaller.
In addition, our method ishousands of times fastett
takes around 5ms per image{1 x 5 initializations for 29

mance on BiolD is nearly maximized due to its simplicity.
Note that our method is thousands of times faster than the
second best method in [1].

landmarks). The method in [1] uses expensive local land- ) S ) )
mark detectors (SIFT+SVM) and it takes more than 10 sec-4-2- Algorithm validation and discussions

onds to run 29 detectors over the entire image. We verify the effectiveness of different components of
Comparison to [12] on LFW87Liang et al.[12] traina  the proposed approach. Such experiments are performed on
set of direction classifiers for pre-defined facial compdsen  the augmented LPFW dataset, using 1,500 images for train-
to guide the ASM search direction. Their algorithm out- jng and 500 for testing. Parameters are fixed as in Section 3,
perform previous ASM and AAM based works by a large nless otherwise noted.
margin. Two-level cascaded regressioi\s discussed in Sec-
We use the same RMSE (Root Mean Square Error)tion 2, the first level regression exploits shape indexed fea
in [12] as the evaluation metric. Table 2 shows our method tyres to obtain geometric invariance and decompose the o-
is significantly better. For the strict error threshold (¥-pi  riginal difficult problem into easier sub-tasks. The second
els), the error rate is reduced nearly by half, fram3% level regression inhibits such features to avoid instahbili
to 13.9%. The superior performance on a large number  pifferent tradeoffs between two-level cascaded regres-
of landmarks verifies the effectiveness of proposed holisti sjon are presented in Table 3, using the same number of
shape regression and the encoded adaptive shape constraifrimitive regressors. On one extreme, not using shape in-
dexed featuresi( = 1,K = 5000) is clearly the worst. On

RMSE <5pixels | <7.5pixels| <10pixels| the other extreme, using such features for every primitive
Methodin [12] | 74.7% 93.5% 97.8% regressor{ = 5000,K = 1) also has poor generalization
Our Method 86.1% 95.2% 98.20 ability in the test. The optimal tradeoff(= 10,K = 500)

. , is found in between via cross validation.
Table 2. Percentages of testimages with RMSE(Root Meanr8qua

Error) less than given thresholds on the LFW87 dataset.

#stagesinlevel 1 (T) 1 5 10 | 100 | 5000
#stages in level 2 (K) 5000 | 1000 | 500 | 50 1
Mean Error 10~2) 15 | 6.2 | 33| 45| 5.2

Comparison to previous methods on BiolDOur model
is trained on augmented LPFW training set and tested on the
entire BiolD dataset. Table 3. Tradeoffs between two levels cascaded regression.

Figure 5 compares our method with previous method-
s [20, 5, 14, 19, 1]. Our result is the best but the improve-

Shape indexed featur&\Vle compare the global and local
methods of shape indexed features. The mean error of local
index method is 0.033, which is much smaller than the mean
error of global index method 0.059. The superior accuracy
supports the proposed local index method.

our method and the original error.

81t is discussed in [1] as: "The localizer requires less thaa second
per fiducial on an Intel Core i7 3.06GHz machine”. We conjeztihat it
takes more than 10 seconds to locate 29 landmarks.
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Figure 9. Selected results from BiolD.
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