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Abstract—This paper presents a novel and simple method of analyzing the motion

of a large image sequence captured by a calibrated outward-looking video camera

moving on a circular trajectory for large-scale environment applications. Previous

circular motion algorithms mainly focus on inward-looking turntable-like setups.

They are not suitable for outward-looking motion where the conic trajectory of

corresponding points degenerates to straight lines. The circular motion of a

calibrated camera essentially has only one unknown rotation angle for each frame.

Themotion recovery for the entire sequence computes only one fundamental matrix

of a pair of frames to extract the angular motion of the pair using Laguerre’s formula

and then propagates the computation of the unknown rotation angles to the other

frames by tracking one point over at least three frames. Finally, a maximum-

likelihood estimation is developed for the optimization of the whole sequence.

Extensive experiments demonstrate the validity of the method and the feasibility of

the application in image-based rendering.

Index Terms—Structure from motion, circular motion, single axis motion,

concentric mosaic.
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1 INTRODUCTION

CIRCULAR motion, or single axis motion, is a practical setup for
image-based modeling and rendering. It arises from traditional
3D modeling using an inward-looking turntable [6] and rendering
with outward-looking concentric mosaics [22]. The motion is a
particular case of the more general planar motion [1] as all rotations
are restricted to be around the same axis.

The outward-looking circular motion is of high interest due to its
widely involved applications, such as image-based rendering [22] or
stereo panorama [18]. A typical outward-looking setup uses a
CCD camera rotating on a horizontal plane around a vertical axis
locatedaway fromthecameraoptical center. The internalparameters
of the camera are assumed to be fixed. A motor-controlled device is
usually used to ensure the uniform angular motion. This may
become inconvenient sometimes, for example, in large-scale outdoor
environmentswhere a power supply is not readily available. In such
cases, using a hand-controlled device together with a structure from
motion algorithm would make the applications more practical.
However, this problem has received very little attention up to now.
To thebest of ourknowledge, all previous circularmotionalgorithms
only work well in small-scale inward looking cases with a moderate
number of images. They all encounter difficulties in large-scale
outward looking applications with a large number of images.

The above considerationsmotivatedourdevelopment of a simple
andefficientmethodcapableof computing circularmotiongeometry
of a large image sequence captured under outward-looking setup.
The newmethod is particularly interesting in that the rotation angle
computation is propagated efficiently between different tracked
feature points using Laguerre’s formula. The propagation is
initialized using only one fundamental matrix of a pair of images
between which feature points have been reliably tracked. Neither
any more fundamental matrices nor trifocal tensors are computed.
One important application of the new method is image-based
rendering using concentricmosaics [22]. Concentricmosaic is a good
trade-off between the ease of image acquisition and viewing space,
among various plenoptic function-based approaches [15], [12], [7].
The geometry of a concentricmosaic capturing system is formulated
as outward-looking circular motion with a calibrated camera and
unknown rotation angles. We demonstrated the composition of
concentric mosaics and rendering results in the experiments.

The paper is organized as follows: Section 2 reviews the circular
motion geometry. Section 3 analyzes the insufficiency of previous
methods and motivates our method. The method is elaborated in
Sections 4, 5, and 6. Experimental results are reported in Section 7.
Section 8 gives a conclusion of the paper. A preliminary short
version of this paper has been reported at the ACCV 2004 [11].

2 REVIEW OF CIRCULAR MOTION GEOMETRY

The relative motion between the scene and the camera under
circular motion can be described as a rotation around a fixed axis.
The most common case is a static camera viewing an object on a
rotating turntable [6]. Without loss of generality, we assume that
the rotation axis is the vertical z-axis in world coordinate frame and
the camera is moving on a horizontal plane.

As similar to planar motion [1], [4], there are some image fixed
entities which are geometrically invariant, as illustrated in Fig. 1.
They include two lines [6]. One is the image of the rotation axis, ls,
which is a line of fixed points in all images since the rotation axis is
fixed with respect to different views. The second is the image of the
vanishing line of the horizontal plane, lh, called the horizon line. It
is a fixed line but not a line of fixed points. Since the image of the
absolute conic (IAC) is fixed under rigid motion, the intersection of
the horizon line lh and IAC, the two points i; j, remain fixed in all
the images. They are actually the image of the two circular points,
I;J, on the horizontal planes. Since the horizon line lh can be
determined by the images of circular points, i; j, there are in total
six degrees of freedom for those image fixed entities, with two for
each image of the two circular points and two for the line ls.

3 MOTIVATION

The key of a circular motion algorithm is to first determine the
image fixed entities, and then the motion parameters, the rotation
angles. We analyze previous circular motion methods and show
that they are infeasible for our problem, the outward-looking
circular motion analysis of a large image sequence.

Fitzgibbon et al. [6] use multiple view tensors [8], [5]. Funda-
mental matrices are computed to obtain the horizon line, lh, and the
image of rotation axis, ls. The rotation angles are then extracted from
trifocal tensors for each image triplet, which is too computationally
expensive for a large image sequence. Mendonca et al. [16], [17]
show that the circular motion geometry can be obtained only from
the object profiles without using point correspondences. Although
their method is simple and efficient, it essentially only applies to
single object modeling using inward-looking turntable and requires
that object silhouettes can be obtained reliably.

Themethods proposed in [10], [9] are closer to our approach. The
main observation is that, under circular motion, the trajectory of one
space point is a circle and this circle projects to a conic in the image.
The image fixed entities can be obtained by fitting conics from point
correspondences. Their method works well for an inward-looking
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turntable as the conic trajectory is evident and the point correspon-
dences are well scattered. However, for the outward-looking case,
the observed conic trajectory becomes barely curved, almost
degenerating to a straight line due to the limited viewing capability
of the camera under such a setup. The conic fitting problem becomes
ill-conditioned and unstable. Fig. 2 illustrates the different conic
trajectories for both cases. Our method avoids the conic fitting
problem but rather only computes the conic centers. We essentially
simplify the ill-conditioned problem by calibrating the camera in
advance, which is analyzed later.

4 ROTATION ANGLE RECOVERY

As illustrated in Fig. 3, let us consider the equivalent case where
the camera is fixed and the scene is rotating around the rotation
axis. The trajectory of the space point A is a circle with center OA.
Image points a1 and a2 are the projection of the same space pointA
in different positions A1 and A2. They are on a conic with center
oa. In order to compute the rotation angle �, the key of our
approach is to apply Laguerre’s formula [20] in image plane
instead of in space plane. If the image of the circular points on the
space plane, i; j, are known, we have

� ¼ 1

2i
logðfoa � a1;oa � a2; oa � i;oa � jgÞ; ð1Þ

and the rotation angle recovery reduces to the computation of the
conic center oa. Note thatwedonot fit thewhole conic. On one hand,
this is numerically unstable. On the other hand, it is also
unnecessary since only the conic center is required, which allows
a simpler geometry approach, as explained later. In essence, we
reduce the difficult conic fitting problem to an easier task by
calibrating the camera in advance. Although the calibration problem
itself is also quite difficult, it is relatively easier in our targeted
applications where the constant internal parameter assumption
usually holds.

The images of the circular points i and j can be obtained from an
offline calibration method [26], [23] or a self-calibration method
using 2D trifocal tensor [1] or 1D trifocal tensor [4]. The image of the
absolute conic ! can be obtained from the internal parameters K of
the calibrated camera,! ¼ ðKKT Þ�1. Therefore, the imageof circular
points i and j are the intersection of ! and the horizon line lh. The
method of computing lh is described later.

5 PROPAGATION OF ANGULAR MOTION

5.1 Initialization from a Fundamental Matrix

A pair of images with a large baseline is first chosen to compute
the fundamental matrix F reliably [14], [25] using point corre-
spondences. We call this pair the reference pair of the sequence. The
fixed line ls and lh are decomposed from the rank-2 symmetric part
of the fundamental matrix, Fs ¼ Fþ FT [6]. The rotation angle
between the reference pair is obtained using Laguerre’s formula as:

� ¼ 1

2i
logðfe1; e2; i; jgÞ; ð2Þ

where e1 and e2 are the two epipoles extracted from the
fundamental matrix F.

The proof of (2) is as follows: As the camera moves on the
horizontal plane, e1 and e2 must be on the horizon line, lh. Let us
select a point o on the line ls and connect it to e1 and e2. Since o is a
fixed point in the two images, the two lines loe1 and loe2 are the
corresponding epipolar lines of o in the two images, respectively.
Select a point b1 from the line loe1 , its corresponding point b2 must
be on the line loe2 due to the constraints that b2 must be on the line
passing through the point e2. Based on the similar deduction
derived earlier, the rotation angle between the two images is
computed from the Laguerre’s formula:

� ¼ 1

2i
logðflob1 ; lob2 ; loi; lojgÞ ¼

1

2i
logðfloe1 ; loe2 ; loi; lojgÞ;

which is equivalent to (2).

5.2 Computation of the Space-Image Homography

For a space point A moving on a space plane (refer to Fig. 3), the
transformation between the space points Ai and the image points
ai; i ¼ 1; 2; . . . , is a planar homographyHa [8], such that ai ’ HaAi,
where ’ denotes equivalence up to scale.

When a rotation angle � between the two images containing the
corresponding image points a1 and a2 is known, the space points can
simplybe assumed asA1 ¼ ðr; 0; 1ÞT andA2 ¼ ðr cosð�Þ; r sinð�Þ; 1ÞT ,
where r is the radius of the space circle. Now, we have four point
correspondences,
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Fig. 1. The image fixed entities under circular motion: ls, the image of fixed rotation

axis; lh, the image of the intersection line of all parallel horizontal planes; i; j, the

image of the circular points on these planes.

Fig. 2. (a) The famous dinosaur sequence taken by an inward-looking turntable. The

conic loci of tracked points are apparent. A fitted conic is shown in highlight. (b) The

classroom sequence taken using an outward-looking camera. The point loci almost

degenerate to straight lines, as shown in highlight. The conic fitting is infeasible.

Fig. 3. Computation of the rotation angle in the image plane instead of in the space

plane. Assume that camera C is fixed and space point A is rotating. The rotating

angle is computed from Laguerre’s formula as � ¼ 1
2i logðflOAA1

; lOAA2
; lOAI ; lOAJgÞ ¼

1
2i logðfloaa1 ; loaa2 ; loai; loajgÞ.



A1 $ a1;A2 $ a2; I ¼ ð1; i; 0ÞT $ i;J ¼ ð1;�i; 0ÞT $ j;

between the space plane and the image plane. Here, I;J are the
circular points on the space plane. Let ðh1 h2 h3Þ be the
homography computed uniquely for r ¼ 1 from the linear system

h1þh3 ’ a1; cosð�Þh1þsinð�Þh2þh3’a2;h1þih2 ’ i;h1�ih2 ’ j:

It could easily be derived that Ha ¼ ð1rh1
1
rh2 h3Þ for arbitrary r,

that is, the third column in Ha is determined uniquely and the first
two columns are determined up to the unknown r. Therefore, the
conic center, oa, is obtained uniquely as

oa ’ Hað0; 0; 1ÞT ¼ h3: ð3Þ

Once oa is known, it becomes straightforward to use Laguerre’s
formula (1) to compute the rotation angle for any third view which
has a visible corresponding point, say a3. This is the key point of
angular motion propagation, as explained in the next section. Note
that the problem of only computing the conic center is much easier
than fitting the whole conic. It is also better geometrically
constrained, that is, the conic center must lie on the image of the
rotation axis, ls. We actually use the projection of computed conic
center from (3) onto the line ls as a first estimation. This constraint
is also exploited in the final optimization.

5.3 Propagation of Angular Motion

Since the image of space point A can possibly be tracked in other
images other than the reference pair, the rotation angle of any
image containing the tracked point of a can be computed using
Laguerre’s formula (1) once the conic center oa is obtained from
(3). For example, a3 is a corresponding point in a third view, the
angular motion between views 2 and 3 is

�23 ¼
1

2i
logðfoa � a2;oa � a3; oa � i;oa � jgÞ:

This procedure can be repeated for all tracked corresponding points
in the reference pair. In other words, the computation of the rotation
angles can simply be propagated to any view in which at least one
point is in correspondence with one point in the reference pair.

There will still be many frames which do not have any “visible”
tracked point from the reference pair. However, notice that the
above angle propagation procedure can be extended to any view
which has one “visible” tracked point from any pair of views
whose rotation angle is already computed. For example, points b2

and b3 are “visible” corresponding points related the known
rotation angle �23, the image of the circle center ob can be obtained
by calculating a homography Hb according to (3). Therefore, all
angular motions involving the views related to point b can be
obtained similarly, that is, for any view in which point b is tracked.

The above propagation procedure can be performed along the
whole sequence unless there are few features in the scene. Note
that the method does not need to compute any other quantities
such as the fundamental matrix. Only tracked points are sufficient.
In the extreme case, feature points tracked over only three frames
suffice to compute all the angles.

5.4 Implementation Considerations

The above method uses minimal data and is very efficient. In real
data, noise and outliers are inevitable and we exploit the high
redundancy in the data to enhance the robustness of the algorithm at
different stages, by taking the following considerations into account,
typically for a large image sequence of thousands of frames.

. The very small baseline between consecutive frames makes
the feature point tracking practical over a long range of
frames, almost up to the viewing capability of the camera
used. To improve the computation accuracy, the funda-
mental matrix in the initialization and homography in the
propagation are computed using robust techniques [8] from
all point correspondences tracked over a relatively long

distance. Furthermore, since we have the freedom of
choosing the reference pair in the initialization, multiple
candidate pairs are randomly selected from the whole
sequence at first and the image fixed entities and initial angle
are computed for each candidate pair. Then, we choose the
reference pair that gives rise to the averageminimal distance
to the median values of all the computed quantities.

. In the angle computation and propagation, one tracked
feature point suffices for computing many angles. In
practice, there are always multiple tracked feature points
whose frame ranges overlap and they will give incon-
sistent angle values. Whenever multiple values are
possible, we take the median as the initial estimated value.

6 OPTIMIZATION

The above method gives reasonable initial estimation for geometry
andmotion parameters and a bundle adjustment is applied at last to
refine all the quantities. We cannot use the general bundle
adjustment that minimizes reprojection errors [6] for efficiency
consideration since there would be too many parameters involved.
We also cannot minimize the sum of squared distances of all points
to their corresponding conics [10] since we do not fit conics. Instead,
a simple cost function is derived and efficient optimization
technique is developed to exploit the sparseness of the cost function.

Computation of metric rectifying homography. The cost
function should be defined in metric space. A natural choice is
the family of space planes where the space point moves. As
discussed previously, there is an image-space transformation, a
planar homography H, which performs metric rectification for the
points in the image plane to the points in the space plane. Such a
homography can be decomposed into a concatenation of two
matrices A and P, representing affine and “pure projective”
transformations, respectively, [3], [13], H ¼ AP, where

P ¼
1 0 0
0 1 0
l1 l2 l3

0
@

1
A

can be determined by the horizon line lh ¼ ðl1; l2; l3ÞT and

A ¼
� 1

�
�
� 0

0 1 0
0 0 1

0
@

1
A

can be determined from the points, ð�� i�; 1; 0ÞT , which are
obtained by applying P to the image of circular points i and j. Let i
and j be ða� ib; c� id; 1ÞT , we have lh ¼ i� j ¼ ðd;�b; bc� adÞT ,
� ¼ acþbd

c2þd2 , � ¼ bc�ad
c2þd2 and, finally,

H ¼
c2 þ d2 �ac� bd 0

0 ad� bc 0
dðad� bcÞ �bðad� bcÞ �ðad� bcÞ2

0
@

1
A: ð4Þ

Definition of the cost function. Ideally, two corresponding
image points a1, a2, the corresponding conic center oa, and rotation
angle � should satisfy

Rð�ÞðHa1 �HoaÞ ¼ ðHa2 �HoaÞ;$ Rð�ÞOAA1
����! ¼ OAA2

����!
; ð5Þ

where Rð�Þ is a rotation matrix. Note the equivalence here should
be satisfied strictly, not up to scale.

For real data, (5) does not hold due to noise and we minimize
the residual error over all tracked feature points. Let n be the
number of feature points. For ith feature point, it is tracked over
mi continuous frames and denoted as xi

1;x
i
2; . . . ;x

i
mi
. Let

frameði; jÞ return the number of frames in which the ith feature
point is tracked until the jth frame, where 1 � I � n; 1 � j � mi.
Let oi be the conic center corresponding to the ith feature point
and �m be the rotation angle between the mth frame and the
ðmþ 1Þth frame. The sum of residual error is
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Xn
i¼1

Xmi�1

j¼1

���Rð�frameði;jÞÞ
ðHxi

j �HoiÞ
kHxi

j �Hoik �
ðHxi

jþ1 �HoiÞ
kHxi

jþ1 �Hoik

���: ð6Þ

The normalization in (6) is necessary. Since different feature points
are transformed by H onto space planes with different and
unknown scales, the space vectors are normalized to have the same

scale to avoid any bias induced by space points which happens to
have very large scale.

If an image sequence possesses a rotation larger than 360 degrees,
we can search for a framewhich ismost similar as the first frame and
does not reach the 360 degree rotation, and then insert the first frame
after it as the ending frame to get a sequence perfectly covering
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Fig. 4. Tracking of 20 feature points simultaneously in each frame over the whole Classroom sequence. Each line segment represents the tracking of one point. Points

tracked in less than 100 frames are discarded for computational stability and not shown in the figure.

Fig. 5. (a) Classroom. (b) Garden. (c) Flower. (d) Classroom (before and after optimization). Recovered rotation angles. (a), (b), and (c) show the angles and standard

deviation after optimization of the three image sequences, respectively. Horizontal straight line in (c) is the ground truth, which is quite close to our result. (d) Shows the

angles before (dotted) and after (solid) optimization of the Classroom sequence. Noise and variations are reduced significantly by optimization step. (e) Plots the three

optimized results together to show that the standard deviation in third experiment (with uniform ground truth) is much smaller than that of the first two. It also

demonstrates that the closure constraint is almost perfectly satisfied after optimization.



360 degrees view of field. This closure constraint could be explicitly
incorporated by introducing the Lagrange term �j

P
m �m � 2�j.

Therefore, the final optimization problem is given as

min

 Xn
i¼1

Xmi�1

j¼1

���R �frameði;jÞ
� � ðHxi

j �HoiÞ
kHxi

j �Hoik �
ðHxi

jþ1 �HoiÞ
kHxi

jþ1 �Hoik

���
þ �j

X
m

�m � 2�j
!
; with lso ¼ 0

ð7Þ

with respect to a total of 6þmþ n parameters, 6 for the image
fixed entities, m for all rotation angles and n for all conic centers.

Optimization. The optimization can be performed using
standard nonlinear algorithms such as Lagrange multiplier method
or Levenberg-Marquart (LM) method, based on the initial estima-
tion. In practice, since there are typically thousands of images
(m ¼ 1; 000� 4; 000) in our targeted applications, and hundreds of
feature points (n ¼ 500� 700) appearing in the whole sequence, the
large number of unknownsmakes the standardmethods intractable
due to their height time complexity Oððmþ nÞ3Þ.

Notice that each term in the first part of (7) only depends on eight
unknowns, �frameði;jÞ, o

i, i, j, and ls. This gives rise to a regular sparse
block structure in the Jacobianmatrix of the cost function. As similar
as in [8], an efficient LM algorithm is developed to exploit the
sparseness and reduces the time complexity toOðm2 þ n3Þ, making
the optimization problem tractable even for a very large image

sequence. Note that although the last term imposing the closure
constraint in (7) does depend on all unknown rotation angles and
injures the “sparseness” of the problem to some extent, it turns out
that this only results in a LM algorithm that is a little bit more
complicated than the one in [8], but does not increase the time
complexity.

Although we do not use the closure constraint as a hard
constraint, it is almost perfectly satisfied by using a relatively large
constant �ð� ¼ 1 in all the experiments).

7 EXPERIMENTS AND APPLICATIONS

In this section, we first report the experimental results to
demonstrate the validity of the method and then show some
preliminary results for the application of concentric mosaics.

Classroom. We demonstrate the complete process of ourmethod
in this experiment. A digital video camera is mounted on a
horizontal bar that is fixed on a tripod and can be rotated by hand.
We extracted 4,382 frames with the resolution 720� 576 from a
video taken in an indoor classroom. The camera’s internal
parameters, including the radial distortion, are calibrated using
the method in [26]. Radial distortion is corrected for each frame.

The feature point tracking is efficiently accomplished by the
standard methods reported in [24], [21]. Simultaneously tracking
50 feature points over 4,382 frames takes about 20 minutes on a P4
1.9GPC. The right image in Fig. 2 shows the loci of a group of feature
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TABLE 1
Running Performance (on a Pentium IV 1.9G PC)

The third column shows the total number of all feature points and the number of feature points tracked simultaneously.

Fig. 6. Composed concentric mosaics using the recovered rotation angles.



points tracked over 600 frames. The two frames corresponding to the
endpoints of these trajectory curves are selected as the reference pair
in the initialization.

Fig. 4 illustrates the tracks of 20 feature points simultaneously
along the whole Classroom sequence. Whenever a feature point is
lost in tracking, a new one is added in the current frame to keep the
number of tracked points constant. Although 20 points are shown
here, we used a larger number (50 or 100) in the implementation to
make the computation more robust. If a point cannot be tracked in
relatively long frames, it is discarded.

The recovered rotation angles are shown in Fig. 5. Fig. 5a shows
the optimized results for Classroom sequence. Fig. 5d plots the
results before and after optimization for comparison. We notice that
the results, even before optimization, are already satisfactory
(summation of all angles is 352 degrees). The optimization step
reduces the variation, keeps the same curve shape, and makes the
result satisfying the closure constraint. Some negative values are
observed in themiddleof the sequence. This isdue tohand trembling
during the video taking process.

Garden. In the second experiment, we took a video in an

outdoor garden with the hand-rotating camera and extracted

3,361 frames. The recovered rotation angles are shown in Fig. 5b.

We are more careful to avoid hand trembling while taking the

video, and consequently the recovered rotation angles have

smaller variation than that of the Classroom sequence. No negative

angle is observed.
Flower. In the third experiment, we took an indoor video using a

motor-controlled device to obtain the uniform angles as ground

truth. This is used to validate our approach. In all, 1,467 frames are

extracted which is much less than those of the first two experiments

and this makes the point tracking more difficult. The recovered

rotation angles aswell as the true values (the horizontal straight line)

are shown in Fig. 5c for comparison. Our result is very close to the

ground truth and the standard deviation ismuch smaller that that of

the first two experiments, as observed in Fig. 5e. This verifies the

effectiveness of our approach.
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Fig. 7. Rendered images from concentric mosaics under novel viewpoints and different camera motions. (a) A forward camera motion. (b) A lateral camera motion. (c) A

lateral and rotating camera motion. Notice that zooming, occlusion, and reflection effects are well rendered and no obvious artifact is observed.



Running performance. The whole algorithm is quite efficient,
taking into account the large number of images involved. Most time
is consumed in the precalibration, removal of radial distortion,
feature tracking, and the final optimization. The propagation step is
very fast. It took only several hours to process the video sequence
and obtain the final result. The low working load makes our
approach suitable for practical applications.

Table 1 summarizes theperformance in the optimization step. For
each image sequence, we obtained the results by using either 100 or
50 feature points tracked simultaneously. We found the final results
almost the same, while using 100 points is significantly more time-
consuming. The results shown in Fig. 5 are obtained using 50 points.

Concentric mosaics composition and rendering. After the
rotation angles are recovered, panoramic images can be constructed
from the original images [22], [19], [18]. Fig. 6 shows the composed
concentric mosaics. They can be used for efficient rendering [22], [2].
Fig. 7 illustrates several images rendered from novel viewpoints
under different camera motions. It can be seen that the zooming,
occlusion, and reflection effects are well rendered and no obvious
artifact is observed.

8 CONCLUSION

Thispaperpresentedanewmethodcapable of efficiently analyzinga
large sequence of images captured by a hand-controlled outward-
looking camera under circular motion. The method is remarkably
simple as it needs only one fundamental matrix to initialize an
efficient procedure that automatically propagates angle computa-
tion to the whole sequence. The simplicity is achieved by pre-
calibrating the camera. This method provides a practical way of
capturing large-scale outdoor environments with a hand-controlled
camera and makes relevant applications more practical. Experi-
ments on real video sequences demonstrate the validity and
efficiency of the algorithm. Applications on concentric mosaics are
also shown.
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